Efficiency = Work Output / Work Input
92% = Work Output / 100
0.92 = Work Output / 100
Work Output = 0.92 * 100
Work Output = 92 joules.
Answer:
B: Horizontally to the left
Explanation:
Horizontal velocity is always constant throughout the entire trajectory of the rocket and acts in the horizontal direction in which the rocket was launched. This is because gravity only acts in the downwards vertical direction.
So in order words at peak height, horizontal velocity is in the horizontal direction in which the rocket was launched.
So if it was to the left, then direction is left but if right, then direction is right.
Looking at the options, the most appropriate will be:
Horizontally to the left
Answer:
1.1397 Nm
Explanation:
When the palmaris longus muscle in the forearm is flexed, the wrist moves back and forth.
If the muscle generates a force
and
, then the torque is equal to 
we see that r = 2.65 cm = 0.0265 m
therefore
torque = 0.0265 x 49.5
= 1.1397 Nm
Answer:
hey...................................
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:

- radius of the hill:

Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car

(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,

, so we can write:

(1)
By rearranging the equation and substituting the numbers, we find N:

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:

from which we find