Answer:
Let I and j be the unit vector along x and y axis respectively.
Electric field at origin is given by
E= kq1/r1^2 i + kq2/r2^2j
= 9*10^9*1.6*10^-19*/10^-6*(2i+ j)
= (2.88i + 1.44j)*10^-3 N/C
Force on charge= qE= 3*10^-19*1.6*(2.88i +1. 44 j) *10^-3
F= (1.382 i + 0.691 j) *10^-21
Goodluck
Explanation:
Answer:
a) a = 4.9 m / s², N = 16.97 N and b) F = 9.8 N
Explanation:
a) For this exercise we will use Newton's second law, we write a reference system with the x axis parallel to the plane, see attached, in this system the only force we have to break down is weight, let's use trigonometry
sin 30 = Wx / W
cos 30 = Wy / W
Wx = W sin30
Wy = W cos 30
Let's write the equations on each axis
X axis
Wx = ma
Y Axis
N- Wy = 0
N = Wy = mg cos 30
N = 2.0 9.8 cos 30
N = 16.97 N
We calculate the acceleration
a = Wx / m
a = mg sin 30 / m
a = g sin 30
a =9.8 sin 30
a = 4.9 m / s²
b) For the block to move with constant speed, the acceleration must be zero, so the force applied must be equal to the weight component
F -Wx = 0
F = Wx
F = m g sin 30
F = 2.0 9.8 sin 30
F = 9.8 N
Answer:
destroys habitats is the main one
Explanation:
eye sore can be one and it can burst causing a flood is also one :)
Solution :
a). Using Gauss's law :
,
.........(1)
Let
in equation (1)
Therefore,
.............(2)
![$V_b-V_a = \int^a_b \vec E. d\vec l$](https://tex.z-dn.net/?f=%24V_b-V_a%20%3D%20%5Cint%5Ea_b%20%5Cvec%20E.%20d%5Cvec%20l%24)
![$=\int^a_b E \ dx$](https://tex.z-dn.net/?f=%24%3D%5Cint%5Ea_b%20E%20%5C%20dx%24)
![$=\frac{Q}{4 \pi \epsilon_0} \int^a_b \frac{1}{x^2} \ dx$](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7BQ%7D%7B4%20%5Cpi%20%5Cepsilon_0%7D%20%5Cint%5Ea_b%20%5Cfrac%7B1%7D%7Bx%5E2%7D%20%5C%20dx%24)
....................(3)
Therefore, ![$U=\frac{1}{2}Q \Delta V$](https://tex.z-dn.net/?f=%24U%3D%5Cfrac%7B1%7D%7B2%7DQ%20%5CDelta%20V%24)
![$=\frac{1}{2}(4 \pi \epsilon_0 b^2 E_0)\left(\frac{Q(a-b)}{4\pi \epsilon_0 a b}\right)$](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B1%7D%7B2%7D%284%20%5Cpi%20%5Cepsilon_0%20b%5E2%20E_0%29%5Cleft%28%5Cfrac%7BQ%28a-b%29%7D%7B4%5Cpi%20%5Cepsilon_0%20a%20b%7D%5Cright%29%24)
.............(4)
Now differentiating the equation (4) w.r.t. 'b', we get
Thus the radius for the inner cylinder conductor is ![$b=\frac{3}{4}a$](https://tex.z-dn.net/?f=%24b%3D%5Cfrac%7B3%7D%7B4%7Da%24)
b). For the energy storage, substitute the radius in (4), we get
![$U = 4 \pi\epsilon_0 \frac{27a^3E^2_0}{512}$](https://tex.z-dn.net/?f=%24U%20%3D%204%20%5Cpi%5Cepsilon_0%20%5Cfrac%7B27a%5E3E%5E2_0%7D%7B512%7D%24)
This is the amount of energy stored in the conductor.