1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dalvyx [7]
2 years ago
13

(28 points) In a little over 5 billion years, our star will slough off ~20% of its mass and collapse to a white dwarf star of ra

dius 8,000 km. We will model it as a sphere. What will its angular momentum be in terms of its current angular momentum? What will its rotation period be in terms of its current period? b) (12 points) What will its rotational kinetic energy be in terms of its current rotational kinetic energy?
Physics
1 answer:
Sedbober [7]2 years ago
8 0

Answer:

The angular momentum is same as it was before.

The rotation period is 1.058*10^{-4} times the original period.

The rotational kinetic energy is 9452 times greater.

Explanation:

The angular momentum L of a rigid body is

L = I\omega,

where I is the moment of inertia and \omega is the angular velocity.

Now, the law of conservation of momentum demands that

I_1\omega_1 = I_2\omega_2,

in words this means the angular momentum before must equal the angular momentum after.

Let us call M the mass, R the radius, and \omega_1 the angular velocity of the sun before it becomes a white dwarf, then its linear momentum is

I_1\omega_1 = \dfrac{2}{5}MR^2 \omega_1     (Remember for a solid sphere I = \dfrac{2}{5} MR^2)

After it has become a white dwarf, the suns mass is 80% of what it had before <em>(went off by 20%),</em> and its radius has become 0.0115% its initial value <em>(8000 km is 0.0115% of the radius of the sun ); </em>therefore, the angular momentum is

I_2\omega_2 = \dfrac{2}{5} (0.8M)(0.0115R)^2 \omega_2

which must be equal to the angular momentum it had before; therefore

\dfrac{2}{5}MR^2 \omega_1 = \dfrac{2}{5} (0.8M)(0.0115R)^2 \omega_2

which we solve for \omega_2:

MR^2 \omega_1 = (0.8M)(0.0115R)^2 \omega_2

MR^2 \omega_1 = (0.8)(0.0115)^2 MR^2\omega_2

\omega_1 = (0.8)(0.0115)^2 \omega_2

\omega_2= \dfrac{\omega_1}{(0.8)(0.0115)^2 }

\boxed{ \omega_2 = 9452\omega_1.}

which is about whopping 9500 times larger than initial angular velocity!!

Now the rotation period T is

T_2 = \dfrac{2\pi}{\omega_2}

T = \dfrac{2\pi}{ 9452\omega_1}= 1.058*10^{-4} (\dfrac{2\pi}{ \omega_1})

since \dfrac{2\pi}{ \omega_1} =T_1

\boxed{T_2 = 1.058*10^{-4} T_1}

Similarly, the rotation kinetic energy will be

K_2 = \dfrac{1}{2}I_2\omega_2^2

K_2 = \dfrac{1}{2}*\dfrac{2}{5} (0.8M)(0.0115R)^2 ( 9452\omega_1})^2

K_2 =0.8*0.0115^2*9452^2 [\dfrac{1}{2}*\dfrac{2}{5} mR^2w_1^2]

\boxed{K_2 =9452 K_1}

which is about 9500 times larger than initial rotational kinetic energy!

You might be interested in
A river 1.00 mile wide flows with a constant speed of 1.00 mph. A man can row a boat at 2.00 mph. He crosses the river in a dire
gladu [14]

To solve this problem we will apply the geometric concepts of displacement according to the description given. Taking into account that there is an initial displacement towards the North and then towards the west, therefore the speed would be:

V_T^2=v_N^2-v_W^2

V_T = \sqrt{v_N^2-v_W^2}

Travel north 2mph and west to 1mph, then,

V_T = \sqrt{2^2-1^2}

V_T = \sqrt{3}

The route is done exactly the same to the south and east, so make this route twice, from the definition of speed we have to

v= \frac{\Delta x}{t}

t = \frac{\Delta x}{v}

t = \frac{2*(1mile)}{\sqrt{3}mph}

t = 1.15hour

Therefore the total travel time for the man is 1.15hour.

3 0
3 years ago
According to Boyle’s law, PV= K, what was the volume at the time of the first measurement given the following information? Round
alexandr402 [8]

Answer:

Iam a learning

6 0
2 years ago
A charge of Q is fixed in space. A second charge of q was first placed at a distance r1 away from Q. Then it was moved along a s
topjm [15]

Answer:

\Delta U = \frac{Qq}{4\pi\epsilon_0}(\frac{1}{r_2^2}-\frac{1}{r_1^2})

Explanation:

The electrostatic potential energy is given by the following formula

U = \frac{1}{4\pi\epsilon_0}\frac{q_1q_2}{r^2}

Now, we will apply this formula to both cases:

U_1 = \frac{1}{4\pi\epsilon_0}\frac{Qq}{r_1^2}\\U_2 = \frac{1}{4\pi\epsilon_0}\frac{Qq}{r_2^2}

So, the change in the potential energy is

\Delta U = U_2 - U_1 = \frac{Qq}{4\pi\epsilon_0}(\frac{1}{r_2^2}-\frac{1}{r_1^2})

7 0
3 years ago
Both the lens and the cornea of the eye have a primary function of
3241004551 [841]

Answer: B. bending light

Explanation:

The phenomenom of vision in human eye is thanks to refraction (when light changes its direction as it passes through one medium to another), and this is what the cornea and the lens do.

When the ray of light encounters the eye, the first thing it finds is the <u>cornea</u>, which<u> bends this ray and begins to form an image</u>, then light passes through the <u>pupil</u>, which is in charge of regulating the amount of light that enters in the eye.  

After light travels through pupil it passes through the <u>lens</u>, where <u>the rays of light change the direction again in order to focus the formed image on the retina. </u>

At this point it is important to note the formed image is downward, then the retina transforms light into electrical impulses that are sent to the brain through the optic nerve and finally the brain interprets these messages, and forms a right upward image.

In the image attached these parts can be seen.

6 0
2 years ago
Let two objects of equal mass m collide. Object 1 has initial velocityv, directed to the right, and object 2 isinitially station
3241004551 [841]
<span>Our equation 1 would be
m*v=M*V1+m*V2
v=V1+V2
 v-V1=V2 

the equation 2 would look like this
 </span>V^2=V1^2+V2^2  
V^2-V1^2=V2^2
(V-V1)*(V+V1)=V2^2Dividing with the 1
V+V1=V2 
8 0
3 years ago
Other questions:
  • When two waves undergo complete, constructive interference, which of the following increases ?
    14·1 answer
  • The depth of the liquid is 10 cm and the radius of the cylinder is 3.0 cm. The weight of
    7·1 answer
  • Would the energy of the wave increase or decrease if the speed of the wave increases? Why?
    5·1 answer
  • PLEASE HELP 20 POINTS AND BRAINLIEST.
    12·2 answers
  • IS THIS CORRECT???...........................
    11·1 answer
  • Why is the inner core a dense ball of solid metal?
    6·1 answer
  • A projectile has an initial x-velocity of 4 m/s, and an initial y-velocity of 27.7 m/s. What is the range of the projectile
    15·1 answer
  • Write short letters.
    11·2 answers
  • How much work is done lifting a 9.10-kg box straight up onto a shelf that is 1.80 m high
    12·1 answer
  • Forces present on a flying dove
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!