1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inysia [295]
3 years ago
11

Why is it realistic to say all living organisms are solar powered

Physics
1 answer:
Naddika [18.5K]3 years ago
3 0
Beucase for example: humans rely on the sun for vitamins and to keep theyre skin healthy, animals for the same reason and plants rely on it for photosynthesis. hope that helps!
You might be interested in
An airplane flies with a constant speed of 560 miles per hour. How far can it travel in 1 1/2 hours?
Alik [6]
You would multiply the speed by the time. So the answer would be 840 miles.
5 0
3 years ago
A ball moving with an initial velocity of 5 m/s comes to rest after 2s. What was the ball's acceleration?
Inga [223]

Answer:

-2.5m/s²

Explanation:

The acceleration of a body is giving by the rate of change of the body's velocity. It is given by

a = Δv / t        ----------------(i)

Where;

a = acceleration (measured in m/s²)

Δv = change in velocity = final velocity - initial velocity   (measure in m/s)

t = time taken for the change (measured in seconds(s))

From the question;

i. initial velocity = 5m/s

final velocity = 0 [since the body (ball) comes to rest]

Δv = 0 - 5 = -5m/s

ii. time taken = t = 2s

<em>Substitute these values into equation (i) as follows;</em>

a = (-5m/s) / (2s)

a = -2.5m/s²

Therefore, the acceleration of the ball is -2.5m/s²

NB: The negative sign shows that the ball was actually decelerating.

6 0
3 years ago
2.(Ramp section) Suppose the height of the ramp is h1= 0.40m, and the foot of the ramp is horizontal, and is h2= 1.5m above the
frozen [14]

Answer:

a) the distance that the solid steel sphere sliding down the ramp without friction is 1.55 m

b) the distance that a solid steel sphere rolling down the ramp without slipping is 1.31 m

c) the distance that a spherical steel shell with shell thickness 1.0 mm rolling down the ramp without slipping is 1.2 m

d) the distance that a solid aluminum sphere rolling down the ramp without slipping is 1.31 m

 

Explanation:

Given that;

height of the ramp h1 = 0.40 m

foot of the ramp above the floor h2 = 1.50 m

assuming R = 15 mm = 0.015 m

density of steel = 7.8 g/cm³

density of aluminum =  2.7 g/cm³

a) distance that the solid steel sphere sliding down the ramp without friction;

we know that

distance = speed × time

d = vt --------let this be equ 1

according to the law of conservation of energy

mgh₁ = \frac{1}{2} mv²

v² = 2gh₁  

v = √(2gh₁)

from the second equation; s = ut +  \frac{1}{2} at²

that is; t = √(2h₂/g)

so we substitute for equations into equation 1

d = √(2gh₁) × √(2h₂/g)

d = √(2gh₁) × √(2h₂/g)

d = 2√( h₁h₂ )    

we plug in our values

d = 2√( 0.40 × 1.5 )

d = 1.55 m

Therefore, the distance that the solid steel sphere sliding down the ramp without friction is 1.55 m

b)

distance that a solid steel sphere rolling down the ramp without slipping;

we know that;

mgh₁ = \frac{1}{2} mv² + \frac{1}{2} I_{}ω²

mgh₁ = \frac{1}{2} mv² + \frac{1}{2} (\frac{2}{5}mR²) ω²

v = √( \frac{10}{7}gh₁  )

so we substitute √( \frac{10}{7}gh₁  ) for v and  t = √(2h₂/g) in equation 1;

d = vt

d = √( \frac{10}{7}gh₁  ) × √(2h₂/g)  

d = 1.69√( h₁h₂ )

we substitute our values

d = 1.69√( 0.4 × 1.5 )  

d = 1.31 m

Therefore, the distance that a solid steel sphere rolling down the ramp without slipping is 1.31 m

 

c)

distance that a spherical steel shell with shell thickness 1.0 mm rolling down the ramp without slipping;

we know that;

mgh₁ = \frac{1}{2} mv² + \frac{1}{2} I_{}ω²

mgh₁ = \frac{1}{2} mv² + \frac{1}{2} (\frac{2}{3}mR²) ω²

v = √( \frac{6}{5}gh₁ )

so we substitute √( \frac{6}{5}gh₁ ) for v and t = √(2h₂/g) in equation 1 again

d = vt

d = √( \frac{6}{5}gh₁ ) × √(2h₂/g)

d = 1.549√( h₁h₂ )

d = 1.549√( 0.4 × 1.5 )

d = 1.2 m

Therefore, the distance that a spherical steel shell with shell thickness 1.0 mm rolling down the ramp without slipping is 1.2 m

d) distance that a solid aluminum sphere rolling down the ramp without slipping.

we know that;

mgh₁ = \frac{1}{2} mv² + \frac{1}{2} I_{}ω²

mgh₁ = \frac{1}{2} mv² + \frac{1}{2} (\frac{2}{5}mR²) ω²

v = √( \frac{10}{7}gh₁  )

so we substitute √( \frac{10}{7}gh₁  ) for v and  t = √(2h₂/g) in equation 1;

d = vt

d = √( \frac{10}{7}gh₁  ) × √(2h₂/g)  

d = 1.69√( h₁h₂ )

we substitute our values

d = 1.69√( 0.4 × 1.5 )  

d = 1.31 m

Therefore, the distance that a solid aluminum sphere rolling down the ramp without slipping is 1.31 m

8 0
3 years ago
An archer wants to hit a target that is dropped from a tower. At the sound of a horn, the archer is to shoot an arrow; at the sa
bija089 [108]

It has to be D because the arrow will drop as it moves, if it were a gun, you'd lead the target so fire below it, but due to it being an arrow, you aim high not low. Also, they didnt specify how fast anything is, so you'd probably miss if you actually did it.


6 0
3 years ago
Read 2 more answers
How are energy, force, and the motion of objects related?
OLEGan [10]

Answer:

When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object. For example, when energy is transferred to an Earth-object system as an object is raised, the gravitational field energy of the system increases. This energy is released as the object falls; the mechanism of this release is the gravitational force. Likewise, two magnetic and electrically charged objects interacting at a distance exert forces on each other that can transfer energy between the interacting objects.

Explanation:

Even when an object is sitting still, it has energy stored inside that can be turned into kinetic energy (motion). ... A force is a push or pull that causes an object to move, change direction, change speed, or stop. Without a force, an object that is moving will continue to move and an object at rest will remain at rest.

5 0
3 years ago
Read 2 more answers
Other questions:
  • The type of graph used to show how a part of something relates to the whole is which of the following?
    13·2 answers
  • An average person can reach a maximum height of about 60 cm when jumping straight up from a crouched position. During the jump i
    7·1 answer
  • Consider an unknown charge that is released from rest at a particular location in an electric field so that it has some initial
    12·1 answer
  • The national high magnetic field laboratory holds the world record for creating the strongest magnetic field. for brief periods
    5·2 answers
  • Does a more efficient car have a larger or smaller LPK number? Explain how you know..
    12·2 answers
  • Acceleration is the magnitude of average velocity true or false
    12·1 answer
  • What can you infer about how traveling changed America? Support your inference with evidence from the text and your own knowledg
    11·1 answer
  • Kirchhoff's junction rule is a statement of: Group of answer choices the law of conservation of momentum the law of conservation
    8·1 answer
  • A monkey has a mass of 3200 grams is moving at a speed of 7.2 m/s rounds a corner with a radius of 12.5 meters. What are the cen
    6·1 answer
  • How do gases respond to changes in pressure and temperature?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!