Answer:
Both Technician A and B are correct
Explanation:
Methanol is used in internal combustion engines. However, the use of methanol in internal combustion engines has decreased lately even though it was thought to lead to cleaner emissions than gasoline. Methanol internal combustion engines produce formaldehyde which is also an environmental pollutant. Also, the cost of methanol is slightly higher than that of good quality gasoline.
MTBE replaced tetraethyllead as a gasoline additive because the former lead to the emission of particulate lead from automobile exhausts which is a serious environmental pollutant. The use of MTBE has declined over the years due to environmental concerns. It has been banned because it has been found to be a significant groundwater pollutant if gasoline containing MTBE is spilled or leaked at gas stations.
Answer:
Overall ideal mechanical advantage of the machine = 40
Explanation:
Given:
Ideal mechanical advantage of three machine = 2, 4, 5
Find:
Overall ideal mechanical advantage of the machine
Computation:
Overall ideal mechanical advantage of the machine = 2 × 4× 5
Overall ideal mechanical advantage of the machine = 40
Answer:
Explanation:
R-744 is seen as the 'perfect' natural refrigerant as it is climate neutral and there is not a flammability or toxicity risk. It is rated as an A1 from ASHRAE. While it is non-toxic there is still risk if a leak occurs in an enclosed area as R-744 will displace the oxygen in the room and could cause asphyxiation
Answer: 1.137*10^7 Btu/h.
Explanation:
Given data:
Efficiency of the plant = 4.5percent
Net power output of the plant = 150kw
Solution:
The required collection rate
QH = W/n
= 150/0.045 * 0.94782/ 1 /60 */60 Btu/h.
= 3333.333 *3412.152Btu/h.
= 11373840 Btu/h
= 1.137*10^7 Btu/h.
Answer:a
a) Vo/Vi = - 3.4
b) Vo/Vi = - 14.8
c) Vo/Vi = - 1000
Explanation:
a)
R1 = 17kΩ
for ideal op-amp
Va≈Vb=0 so Va=0
(Va - Vi)/5kΩ + (Va -Vo)/17kΩ = 0
sin we know Va≈Vb=0
so
-Vi/5kΩ + -Vo/17kΩ = 0
Vo/Vi = - 17k/5k
Vo/Vi = -3.4
║Vo/Vi ║ = 3.4 ( negative sign phase inversion)
b)
R2 = 74kΩ
for ideal op-amp
Va≈Vb=0 so Va=0
so
(Va-Vi)/5kΩ + (Va-Vo)74kΩ = 0
-Vi/5kΩ + -Vo/74kΩ = 0
Vo/Vi = - 74kΩ/5kΩ
Vo/Vi = - 14.8
║Vo/Vi ║ = 14.8 ( negative sign phase inversion)
c)
Also for ideal op-amp
Va≈Vb=0 so Va=0
Now for position 3 we apply nodal analysis we got at position 1
(Va - Vi)/5kΩ + (Va - Vo)/5000kΩ = 0 ( 5MΩ = 5000kΩ )
so
-Vi/5kΩ + -Vo/5000kΩ = 0
Vo/Vi = - 5000kΩ/5kΩ
Vo/Vi = - 1000
║Vo/Vi ║ = 1000 ( negative sign phase inversion)