Answer:
<h2>698.3Kpa</h2>
Explanation:
Step one:
given data
V1=0.25m^3
T1=290k
P1=100kPa
V2=0.5m^2
T2=405k
P2=? final pressure
Step two:
The combined gas equation is given as
P1V1/T1=P2V2/T2
Substituting we have
(100*0.25)/290=P2*0.05/405
25/290=0.5P2/405
0.086=0.05P2/405
cross multiply
0.086*405=0.05P2
34.9=0.05P2
divide both sides by 0.05
P2=34.9/0.05
P2=698.3Kpa
<u>Therefore the new pressure is 698.3Kpa when the gas is compressed</u>
The answer is D-all choices
Answer:
note:
<u>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment</u>
Answer:
Suction and exhaust processes do not affect the performance of Otto cycle.
Explanation:
Step1
Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.
Step2
Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.
Step3
The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:
Process 0-1 is suction process and process 1-0 is exhaust process.
Answer:
<h2>the answer of sols brother is correct</h2><h3>hope it helps you have a good day</h3><h2 />