1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
posledela
2 years ago
9

Describe how different environments support different varieties of organisms

Chemistry
1 answer:
vladimir2022 [97]2 years ago
3 0

Answer:

How is an environment able to support different varieties of organisms? ... It provides all the necessary conditions, such as temperature, space, water and food resources, oxygen and carbon dioxide, that suit the needs of the organisms. Examples of habitat include forests, mountains, bodies of water, and even puddles.

Explanation:

You might be interested in
How do electrons move between atoms to create electricity?
PilotLPTM [1.2K]
<span>The electrons get energy by the potential</span><span> force when we apply potential difference to a conductor moving from low to high therefore, the electrons move one to another creating electricity.</span>
4 0
3 years ago
Read 2 more answers
1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?
Sedbober [7]
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
5 0
2 years ago
Read 2 more answers
What is the charge of this atom? <br> 65 protons <br> 60 electrons <br><br> A)-5<br> B)+5<br> C)0
Pani-rosa [81]

Answer:

B. +5

Explanation:

4 0
3 years ago
Read 2 more answers
What manmade changes to the environment potentially increase the impact of this hazard?
storchak [24]

Answer:

natural disasters

Explanation:

Drought.

Earthquake.

Flash flood.

Hurricane.

Tornado.

Wild fire.

Winter storm.

these are some examples, hope this helps :)

5 0
3 years ago
Read 2 more answers
PLSSS HELP ANYONE ASAP!
algol [13]
B I hope it’s right I don’t really help a lot but yeah lol
7 0
3 years ago
Other questions:
  • Given that the vapor pressure of water is 17.54 torr at 20 °c, calculate the vapor-pressure lowering of aqueous solutions that a
    6·1 answer
  • Why is a liquid able to flow?
    6·2 answers
  • Which sequence lists types of materials in order from least conductive to most conductive?
    13·2 answers
  • Convert the following to Fahrenheit
    7·1 answer
  • What name is given to a metal strip deep into a solution of salt​
    13·1 answer
  • If a system has 2.00 × 10 2 kcal 2.00×102 kcal of work done to it, and releases 5.00 × 10 2 kJ 5.00×102 kJ of heat into its surr
    13·1 answer
  • Name the following ester molecule:
    9·1 answer
  • Imagine that you are in chemistry lab and need to make 1.00 L of a solution with a pH of 2.60.
    7·1 answer
  • Using the periodic table, choose the more reactive non-metal.<br> S or As
    5·1 answer
  • Summarize how the structure of organic compounds allows them to function as pigments in 2 – 3 sentences
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!