Answer:
A. for K>>1 you can say that the reaction is nearly irreversible so the forward direction is favored. (Products formation)
B. When the temperature rises the equilibrium is going to change but to know how is going to change you have to take into account the kind of reaction. For endothermic reactions (the reverse reaction is favored) and for exothermic reactions (the forward reaction is favored)
Explanation:
A. The equilibrium constant K is defined as

In any case
aA +Bb equilibrium Cd +dD
where K is:
![K= \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}](https://tex.z-dn.net/?f=K%3D%20%5Cfrac%7B%5BC%5D%5E%7Bc%7D%5BD%5D%5E%7Bd%7D%7D%7B%5BA%5D%5E%7Ba%7D%5BB%5D%5E%7Bb%7D%7D)
[] is molar concentration.
If K>>> 1 it means that the molar concentration of products is a lot bigger that the molar concentration of reagents, so the forward reaction is favored.
B. The relation between K and temperature is given by the Van't Hoff equation

Where: H is reaction enthalpy, R is the gas constant and T temperature.
Clearing the equation for
we get:

Here we can study two cases: when delta
is positive (exothermic reactions) and when is negative (endothermic reactions)
For exothermic reactions when we increase the temperature the denominator in the equation would have a negative exponent so
is greater that
and the forward reaction is favored.
When we have an endothermic reaction we will have a positive exponent so
will be less than
the forward reactions is not favored.

This is called drawing conclusions as once they are done w research, they can comprehend the subject in order to predict what may happen under the circumstances.
A 70.-kg person exposed to ⁹⁰Sr absorbs 6.0X10⁵ β⁻ particles, each with an energy of 8.74X10⁻¹⁴ J.
<h3>What is β⁻ particles ?</h3>
A beta particle, also known as a beta ray or beta radiation (symbol ), is a highly energetic, swiftly moving electron or positron that is released during the radioactive disintegration of an atomic nucleus. Beta decay occurs in two ways: decay and + decay, which result in the production of electrons and positrons, respectively.
In air, beta particles with an energy of 0.5 MeV have a range of roughly one meter; the range is energy-dependent.
Ionizing radiation of the sort known as beta particles is regarded, for the purposes of radiation protection, as being more ionizing than gamma rays but less ionizing than alpha particles. The damage to live tissue increases as the ionizing effect increases, but so does the radiation's penetration power.
To learn more about β⁻ particles from the given link:
brainly.com/question/10111545
#SPJ4