Answer:
The importance of the sediments permeability is that if it is permeable, water will flow easily through the sediment and thereby produce a very good supply of water for the well.
Explanation:
When digging a well into saturated sediments, the possibility of the sediment with either little saturation or full saturation being able to provide steady water supply will be limited by how permeable it is. Now, the importance of the sediments permeability is that if it is permeable, water will flow easily through the sediment and thereby produce a very good supply of water for the well.
Answer:
2. [B] = [L]/[T] and [C] = [L]/[T]
Explanation:
I assume you mean this:
A = B² + 2B⁴/C²
Since you can't add numbers with different units (for example, you can't add seconds to meters), each term in the sum must have the same units as A.
B² = [L]²/[T]²
B = [L]/[T]
B⁴/C² = [L]²/[T]²
C²/B⁴ = [T]²/[L]²
C² = B⁴ [T]²/[L]²
C² = ([L]/[T])⁴ [T]²/[L]²
C² = [L]²/[T]²
C = [L]/[T]
Notice we ignore the 2 coefficient, which is unitless.
Answer:
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86
Explanation:
Using the newton second law
k is the spring constante
b positive damping constant
m mass attached
x(t) is the displacement from the equilibrium position

Converting units of weights in units of mass (equation of motion)

From hook's law we can calculate the spring constant k

If we put m and k into the DE, we get

Denoting the constants
2λ =
= 
λ = b/0.215

λ^2 - w^2 = 
This way,
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86
Answer:
Trial 1 is the largest, trial 3 is the smallest
Explanation:
Given:
<em>Trial 1</em>
M₁ = 6·10²² kg
d₁ = 3 500 km = 3.5·10⁶ м
<em>Trial 2</em>
M₂ = 6·10²² kg
d₂ = 7 000 km = 7·10⁶ м
<em>Trial 3</em>
M₃ = 3·10²² kg
d₃ = 7 000 km = 7·10⁶ м
___________
F - ?
Gravitational force:
F₁ = G·m·M₁ / d₁² = m·6.67·10⁻¹¹·6·10²² / (3.5·10⁶)² = 0.37·m (N)
F₂ = G·m·M₂ / d₂² = m·6.67·10⁻¹¹·6·10²² / (7·10⁶)² = 0.08·m (N)
F₃ = G·m·M₃ / d₃² = m·6.67·10⁻¹¹·3·10²² / (7·10⁶)² = 0.04·m (N)
Trial 1 is the largest, trial 3 is the smallest
Answer:
a) L=0. b) L = 262 k ^ Kg m²/s and c) L = 1020.7 k^ kg m²/s
Explanation:
It is angular momentum given by
L = r x p
Bold are vectors; where L is the angular momentum, r the position of the particle and p its linear momentum
One of the easiest ways to make this vector product is with the use of determinants
![{array}\right] \left[\begin{array}{ccc}i&j&k\\x&y&z\\px&py&pz\end{array}\right]](https://tex.z-dn.net/?f=%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5Cx%26y%26z%5C%5Cpx%26py%26pz%5Cend%7Barray%7D%5Cright%5D)
Let's apply this relationship to our case
Let's start by breaking down the speed
v₀ₓ = v₀ cosn 45
voy =v₀ sin 45
v₀ₓ = 9 cos 45
voy = 9 without 45
v₀ₓ = 6.36 m / s
voy = 6.36 m / s
a) at launch point r = 0 whereby L = 0
. b) let's find the position for maximum height, we can use kinematics, at this point the vertical speed is zero
vfy² = voy²- 2 g y
y = voy² / 2g
y = (6.36)²/2 9.8
y = 2.06 m
Let's calculate the angular momentum
L= ![\left[\begin{array}{ccc}i&j&k\\x&y&0\\px&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5Cx%26y%260%5C%5Cpx%260%260%5Cend%7Barray%7D%5Cright%5D)
L = -px y k ^
L = - (m vox) (2.06) k ^
L = - 20 6.36 2.06 k ^
L = 262 k ^ Kg m² / s
The angular momentum is on the z axis
c) At the point of impact, at this point the height is zero and the position on the x-axis is the range
R = vo² sin 2θ / g
R = 9² sin (2 45) /9.8
R = 8.26 m
L =
L = - x py k ^
L = - x m voy
L = - 8.26 20 6.36 k ^
L = 1020.7 k^ kg m² /s