Answer:
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86
Explanation:
Using the newton second law
k is the spring constante
b positive damping constant
m mass attached
x(t) is the displacement from the equilibrium position
![\frac{d^{2} x}{dt^{2}} +\frac{b}{m}\frac{dx}{dt} + \frac{k}{m}x = 0](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5E%7B2%7D%20x%7D%7Bdt%5E%7B2%7D%7D%20%2B%5Cfrac%7Bb%7D%7Bm%7D%5Cfrac%7Bdx%7D%7Bdt%7D%20%2B%20%5Cfrac%7Bk%7D%7Bm%7Dx%20%3D%200)
Converting units of weights in units of mass (equation of motion)
![m = \frac{W}{g} = \frac{14}{32} = 0.43 slug](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7BW%7D%7Bg%7D%20%3D%20%5Cfrac%7B14%7D%7B32%7D%20%3D%200.43%20slug)
From hook's law we can calculate the spring constant k
![k = \frac{W}{s} = \frac{14}{2} = 7 lb/ft](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7BW%7D%7Bs%7D%20%3D%20%5Cfrac%7B14%7D%7B2%7D%20%3D%207%20lb%2Fft)
If we put m and k into the DE, we get
![\frac{d^{2} x}{dt^{2}} +\frac{b}{0.43}\frac{dx}{dt} + 16.28x = 0](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5E%7B2%7D%20x%7D%7Bdt%5E%7B2%7D%7D%20%2B%5Cfrac%7Bb%7D%7B0.43%7D%5Cfrac%7Bdx%7D%7Bdt%7D%20%2B%2016.28x%20%3D%200)
Denoting the constants
2λ =
= ![\frac{b}{0.43}](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7B0.43%7D)
λ = b/0.215
![w^{2} = \frac{k}{m} = 16.28](https://tex.z-dn.net/?f=w%5E%7B2%7D%20%3D%20%5Cfrac%7Bk%7D%7Bm%7D%20%3D%2016.28)
λ^2 - w^2 = ![\frac{b^{2} }{0.046} - 16.28](https://tex.z-dn.net/?f=%5Cfrac%7Bb%5E%7B2%7D%20%7D%7B0.046%7D%20-%2016.28)
This way,
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86