Answer:
The minimum possible coefficient of static friction between the tires and the ground is 0.64.
Explanation:
if the μ is the coefficient of static friction and R is radius of the curve and v is the speed of the car then, one thing we know is that along the curve, the frictional force, f will be equal to the centripedal force, Fc and this relation is :
Fc = f
m×(v^2)/(R) = μ×m×g
(v^2)/(R) = g×μ
μ = (v^2)/(R×g)
= ((25)^2)/((100)×(9.8))
= 0.64
Therefore, the minimum possible coefficient of static friction between the tires and the ground is 0.64.
Force = mass * acceleration = 1500kg * 8m/s²
Answer: The degree of the first term.
Explanation:
The function:

The left and right ends would be indicated when x is changed to -x. When this is substituted, the change is indicated by the first term because only the degree of first term is odd.
Let the left hand side be donated by -x.
Then,

Hence, the correct option is the degree of the first term indicates the left and right end points of the function.
Answer:
75.36 mph
Explanation:
The distance between the other car and the intersection is,
The distance between the police car and the intersection is,
(Negative sign indicates that he is moving towards the intersection)
Therefore the distance between them is given by,
The rate of change is,
Now finding
when
from (1) we have
The officer's radar gun indicates 25 mph pointed at the other car then,
when
from
From (2) we get
Hence the speed of the car is 
Answer:
Pascal's law (also Pascal's principle or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.