Answer: Solar radiation reflects off the lighter colours, away from the car, thus keeping the car cool
Explanation: This is because lighter colors reflect a good amount of radiation while darker colors absorb it. Just like, Antarctica hasn't completely melted because it reflects a lot of the heat that is acting upon it. Or, you notice that you get hotter when you wear a black shirt opposed to a white one.
Answer:
Points downward, and its magnitude is 9.8 m/s^2
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform horizontal motion, with constant velocity and zero acceleration. In fact, there are no forces acting on the projectile along the horizontal direction (if we neglect air resistance), so the acceleration along this direction is zero.
- A vertical motion, with constant acceleration g = 9.8 m/s^2 towards the ground (downward), due to the presence of gravity wich "pulls" the projectile downward.
The total acceleration of the projectile is given by the resultant of the horizontal and vertical components of the acceleration. But we said that the horizontal component is zero, therefore the total acceleration corresponds just to its vertical component, therefore it is a vector with magnitude 9.8 m/s^2 which points downward.
First, it makes your skin feel cooler<span> when it's wet. And when it </span>evaporates<span> it removes some heat. But sweat will only </span>evaporate<span> in an environment where there isn't much</span>water<span> in the air. In a place with high humidity, there're already lots of </span>water<span> molecules in the air. </span>
The angle of inclination is calculated using sin
function,
sin θ = 5 m / 20 m = 0.25
θ = 14.4775°
<span>The net force exerted is then calculated:
F net = m g sin θ = 20 * 9.8 * 0.25 </span>
F net = 49N
<span>Work is product of net force and distance:
W = F net * d = 49 * 20 </span>
<span>Work = 980 J </span>
Answer: v = 2[m/s]Explanation:This avarage velocity can be found with the ... B. 2 meters/ second. C. 3 meters/second. D. 4 meters/second. 1.