1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frez [133]
3 years ago
10

Consider a projectile of mass 20 kg launched with a speed 9 m/s at an elevation angle of 45 degrees. Taking the launch point as

the origin of your coordinate system---
a. What is the magnitude of the angular momentum at launch? kg m/s
b. What is the magnitude of the angular momentum at the instant it reaches maximum height? kg m/s
c.What is the magnitude of the angular momentum at impact?
Physics
1 answer:
viva [34]3 years ago
5 0

Answer:

a) L=0. b) L = 262 k ^   Kg m²/s and c)  L = 1020.7 k^   kg m²/s

Explanation:

It is angular momentum given by

      L = r x p

Bold are vectors; where L is the angular momentum, r the position of the particle and p its linear momentum

One of the easiest ways to make this vector product is with the use of determinants

{array}\right] \left[\begin{array}{ccc}i&j&k\\x&y&z\\px&py&pz\end{array}\right]

Let's apply this relationship to our case

Let's start by breaking down the speed

      v₀ₓ = v₀ cosn 45

      voy =v₀ sin 45

      v₀ₓ = 9 cos 45

      voy = 9 without 45

      v₀ₓ = 6.36 m / s

      voy = 6.36 m / s

a) at launch point r = 0 whereby L = 0

. b) let's find the position for maximum height, we can use kinematics, at this point the vertical speed is zero

   vfy² = voy²- 2 g y

   y = voy² / 2g

   y = (6.36)²/2 9.8

   y = 2.06 m

Let's calculate the angular momentum

L= \left[\begin{array}{ccc}i&j&k\\x&y&0\\px&0&0\end{array}\right]

L = -px y k ^

L = - (m vox) (2.06) k ^

L = - 20 6.36 2.06 k ^

L = 262 k ^   Kg m² / s

The angular momentum is on the z axis

c) At the point of impact, at this point the height is zero and the position on the x-axis is the range

     R = vo² sin 2θ / g

     R = 9² sin (2 45) /9.8

     R = 8.26 m

L = \left[\begin{array}{ccc}i&j&k\\x&0&0\\px&py&0\end{array}\right]

L = - x py k ^

L = - x m voy

L = - 8.26 20 6.36 k ^

L = 1020.7 k^   kg m² /s

You might be interested in
ماهي قوة التركيز من العين عندما ينضر الكاءن من ٢٠ الى ٥٠٠ من عينه
Debora [2.8K]

Answer:

What is the power of focus from the eye when a subject looks from 20 to 500 from its eye?

Explanation:

Is that your question?

4 0
2 years ago
Una tortuga se desplaza en línea recta 100cm al norte y luego 80cm al este, determine su desplazamiento
valentinak56 [21]

Answer:

is this the full question?

5 0
2 years ago
Which equation is used to calculate the magnetic force on a charge moving in a magnetic field?
nadya68 [22]

Answer:

B

Explanation:

6 0
3 years ago
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
A cyclist and his bicycle have a combined mass of 88 kg and a combined
SpyIntel [72]

Answer:D

Explanation:

Mark brainly

5 0
3 years ago
Other questions:
  • Gary rides his bike down the street in 30 s. His speed was a constant 5 m/s. What is the value of his acceleration during this t
    5·1 answer
  • The air sealed between two panes of glass in some windows helps to _____.
    5·2 answers
  • What was the purpose of the 1996 Columbia NASA launch?​
    15·1 answer
  • The motion of an object will not be changed if
    15·2 answers
  • How many protons does this atom have?
    15·2 answers
  • What is the scientific term for this type of wave that was produced by a drum?
    10·1 answer
  • A charged particle enters a uniform magnetic field B_vec with a velocity v_vec at right angles to the field.It moves in a circle
    12·1 answer
  • A mass of 0.8 kg is fixed at a vertical spring with an unknown spring constant. When spring is released from rest, it extends to
    9·1 answer
  • What is water potential???​
    12·2 answers
  • The conduction of heat from hot body to cold body is an example of what thermodynamics process?<br>​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!