Answer:
a) 
b) 
c) 
Explanation:
The symbols of the isotopes are written like

where,
X is the element
A is the mass number (protons + neutrons)
Z is the atomic number (protons)
<em>a) Iodine-131</em>
The atomic number of iodine is 53. The mass number of this isotope is 131. The symbol is
.
<em>b) Iridium-192</em>
The atomic number of iridium is 77. The mass number of this isotope is 192. The symbol is
.
<em>c) Samarium-153</em>
The atomic number of samarium is 62. The mass number of this isotope is 153. The symbol is
.
Answer:
The final and initial concentration of the acid and it's conjugate base are approximately equal, that is we use the weak acid approximation.
Explanation:
The Henderson-Hasselbalch is used to calculate the pH of a buffer solution. It depends on the weak acid approximation.
Since the weak acid ionizes only to a small extent, then we can say that [HA] ≈ [HA]i
Where [HA] = final concentration of the acid and [HA]i = initial concentration of the acid.
It also follows that [A^-] ≈ [A^-]i where [A^-] and[A^-]i refer to final and initial concentrations of the conjugate base hence the answer above.
Answer:
Mass of chemical = 1.5 mg
Explanation:
Step 1: First calculate the concentration of the stock solution required to make the final solution.
Using C1V1 = C2V2
C1 = concentration of the stock solution; V1 = volume of stock solution; C2 = concentration of final solution; V2 = volume of final solution
C1 = C2V2/V1
C1 = (6 * 25)/ 0.1
C1 = 1500 ng/μL = 1.5 μg/μL
Step 2: Mass of chemical added:
Mass of sample = concentration * volume
Concentration of stock = 1.5 μg/μL; volume of stock = 10 mL = 10^6 μL
Mass of stock = 1.5 μg/μL * 10^6 μL = 1.5 * 10^6 μg = 1.5 mg
Therefore, mass of sample = 1.5 mg