1)
<span>m(NaCl) = 1.95 g
V(H2O) = 250mL
M(NaCl) = </span><span>58.5 g/mole
Since waters density value is 1g/mL, it can be assumed that volume and mass of water are same values:
</span>V(H2O) = 250ml = 250g = 0.25 kg<span>
</span><span>molality of NaCl:
</span><span>
n(NaCl)=m/M=1.95/58.5= 0.033 mole
</span>molality b(NaCl)=n(NaCl) / V (H2O)= 0.033/0.25 = 0.132 mol/kg
<span>
milimolality of NaOH = 0.132/0,001 = 132 mmole/kg
</span>
milliosmolality of NaOH = milimolality x N of ions formed in dissociation
Since NaCl dissociates into 2 ions in solution:
<span>
</span>milliosmolality of NaOH = 132 x 2 = 264 osmol<span>es/kg
</span>
2)
m(gl) = 9 g
V(H2O) = 250mL
M(NaCl) = 180 g/mole
Since waters density value is 1g/mL, it can be assumed that volume and mass of water are same values:
V(H2O) = 250ml = 250g = 0.25 kg
molality of glucose:
n(gl)=m/M=9/180= 0.05 mole
molality b(gl)=n(gl) / V (H2O)= 0.05/0.25 = 0.2 mol/kg
milimolality of glucose = 0.132/0,001 = 200 mmole/kg
milliosmolality of glucose = milimolality x N of ions formed in dissociation
Since glucose does not dissociate, milimolality and milliosmolality are same:
milliosmolality of glucose = 200 osmoles/kg
3)
The osmosis represents the diffusion of solvent molecules through a semi-permeable membrane that allows passage solvent molecules but does not to the dissolved substance molecule. The osmosis occurs when the concentrations of the solution on both sides of the membrane are different. Since the semi-permeable membrane only permeates the solvent molecules, but not the particles of the dissolved substance, it occurs the solvent diffusion through the membrane, i.e. the solvent molecules pass through the membrane to equalize the concentration on both sides of the membrane. Solvents molecules move from the middle with a lower concentration in the middle with a higher concentration of dissolved substances.
In our case, osmosis will occur because the concentration of NaCl solution and the concentration of glucose solution do not have same values. Osmosis will occur in the direction of glucose solution because it has a lower concentration.
Answer:
A) It's correctly written
B) 77%
C) 835 calories
Explanation:
A) From online sources, we have number of calories as follows;
Fats: 9 calories per gram
Protein; 4 calories per gram
Carbs; 4 calories per gram
Total calories for each;
Total fat = 3 × 9 = 27 calories
Total protein = 3 × 4 = 12 calories
Total carbs = 32 × 4 = 128 calories
(sugar and dietary Fibre are classified as carbohydrates and so total carbs takes care of their calories).
Thus, total number of calories per serving = 27 + 12 + 128 = 167 calories per serving which is same as what is given.
B) percent from carbohydrates per serving = total calories from carbs/total number of calories per serving × 100% = 128/167 × 100% ≈ 77%
C) One box contains 5 servings. Thus total number of calories per box = 167 × 5 = 835 calories
Answer:
0.1066 hours
Explanation:
A common pesticide degrades in a first-order process with a rate constant (k) of 6.5 1/hours. We can calculate its half-life (t1/2), that is, the times that it takes for its concentration to be halved, using the following expression.
t1/2 = ln2/k
t1/2 = ln2/6.5 h⁻¹
t1/2 = 0.1066 h
The half-life of the pesticide is 0.1066 hours.
Carbon and oxygen to form carbon
Because the heat of the ocean mixed with the cold air above the ocean causes a hurricane