Hi!
The answer would be A. Isobaric Process
<h3>Explanation:</h3>
Isobaric process is a process where the pressure inside a system remains unchanged. In the Pressure Volume graph given, you can see that the pressure (y axis) remains constant with an increasing volume ( x axis). An example of this would be heating a container with a movable piston. Now, the degree of pressure is dependent on the frequency of collisions of particles inside a system on the walls. If this frequency changes, the pressure changes (proportionally). In our example, heating a container with a movable piston results in the particles inside the container to gain kinetic energy and move faster, meaning an increased frequency of collisions (higher pressure), but at the system time the increase in pressure results in the piston being pushed outwards, causing the volume of the container to increase. This results in decreased frequency of collision of the particles with the walls of the container (lesser pressure). This results in the a zero net effect on the pressure.
Hope this helps!
The answer is actually True, I just took the test and it was correct.
Answer:
This is because white light consists of 7 colours with different angles o deviation or retraction.
Explanation:
When a narrow beam of light is refracted by a prism the light spreads into a band of colours (called the spectrum of light )
But in this case if a blue colour is observed it is due to the angle of refraction ,for instance red is refracted the least and hence is seen
Answer:
t = 5.59x10⁴ y
Explanation:
To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:
(1)
<em>where
: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>
To find A₀ we can use the following equation:
(2)
<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>
From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:
<em>where
: is the tree's carbon mass,
: is the Avogadro's number and
: is the ¹²C mass. </em>
Similarly, from equation (2) λ is:
<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

So, the initial activity A₀ is:
Finally, we can calculate the time from equation (1):
I hope it helps you!
Answer:
0.872<em>m/s</em>
Explanation:
Tangential velocity is given by the formula,

In the question given,
radius= 25meters
time= 180secs
pie= 3.14
number of laps= 1
The magnitude of tangential velocity equals;

<em>v </em>= 157<em>m</em>/180<em>secs</em>
Therefore, the magnitude of the tangential velocity
=0.872<em>m/secs</em>