3.60 A = 3.60 coulombs of charge per second
(3.60 Coul/sec) x (15.3 sec) = 55.08 coulombs of charge
1 coulomb of charge is carried by 6.25 x 10^18 electrons
Number of electrons =
(55.08 Coul) x (6.25 x 10^18 e/coul) = <em>3.4425 x 10^20 electrons</em>
The gravitational force between the spheres is

where <em>G</em> = 6.674 x 10⁻¹¹ N m²/kg².
The weight of the lighter sphere is

where <em>g</em> = 9.80 m/s².
The ratio between the two forces is then

The formula for energy of motion is KE = .5 x m x v^2
Ke= Kinetic Energy in Joules
m = Mass in Kilograms
v = Velocity in Meters per Second
Answer:
Options d and e
Explanation:
The pendulum which will be set in motion are those which their natural frequency is equal to the frequency of oscillation of the beam.
We can get the length of the pendulums likely to oscillate with the formula;

where g=9.8m/s
ω= 2rad/s to 4rad/sec
when ω= 2rad/sec

L = 2.45m
when ω= 4rad/sec

L = 9.8/16
L=0.6125m
L is between 0.6125m and 2.45m.
This means only pendulum lengths in this range will oscillate.Therefore pendulums with length 0.8m and 1.2m will be strongly set in motion.
Have a great day ahead