The mass of Ca(CN)2 : 92,11 g/mol
<h3>Further explanation</h3>
Given
0.0321 moles of Ca(CN)2
Required
The mass
Solution
The mole is the number of particles contained in a substance
1 mol = 6.02.10²³
Moles can also be determined from the amount of substance mass and its molar mass
mol(n) = mass(m) : MW(molecular weight)
Input the value :
mass = mol x MW Ca (CN)2
mass = 0.0321 x 92,11 g/mol
mass = 2.957 g
I believe it was discovered in france
Density is a property of the substances that is obtained by dividing its mass by the volume. For a rectangular solid, the volume may be solved by the following equation,
V = L x W x H
Substituting the given values for the dimension,
V = (2.30 cm) x (4.01 cm) x (1.82 cm) = 16.78786 cm³
Calculating for the density,
Density = mass / volume
Density = 25.71 cm / <span>16.78786 cm³ = 1.53 grams per cm</span>³
Thus, the density of the given solid is approximately 1.53 grams per cm³.
The pressure exerted by 0.57 moles of CO2 at a temperature of 25°C and a volume of 500 ml is 28 atm.
<u>Explanation:</u>
According to ideal gas law,
PV = nRT
where P represents the pressure of a gas,
V represents the volume of a gas,
n represents the number of moles,
R represents the gas constant = 0.0821 L atm / mol K.
T represents the temperature of a gas.
Given V = 500 ml = 0.5 l, T = 25°C = 298 K, n = 0.57 mol
PV = nRT
P = nRT / V
= (0.57
0.0821
298) / 0.5
P = 28 atm.
The pressure of a gas is 28 atm.