Answer:
a. 7.046 Nm²/C
b. 2.348 Nm²/C
Explanation:
Data given:
Base of equilateral triangle = 25.0 cm = 0.25 m
Strength of electric field = 260 N/C
In order to find the electric flux we first have to find out the area of triangle.
Area of triangle = 
= 
= 0.0271 m³
Lets find electric flux,
Electric Flux = E. A
= 260×0.0271
= 7.046 Nm²/C
Now we can find the electric flux through each of the three sides.
Electric flux through three sides = 
= 2.348 N m²/C
By working with percentages, we want to see how many inches is the center of gravity out of the limits. We will find that the CG is 1.45 inches out of limits.
<h3>What are the limits?</h3>
First, we need to find the limits.
We know that the MAC is 58 inches, and the limits are from 26% to 43% MAC.
So if 58 in is the 100%, the 26% and 43% of that are:
- 26% → (26%/100%)*58in = 0.26*58 in = 15.08 in
- 43% → (43%/100%)*58in = 0.43*58 in = 24.94 in.
But we know that the CG is found to be 45.5% MAC, then it measures:
(45.5%/100%)*58in = 0.455*58in = 26.39 in
We need to compare it with the largest limit, so we get:
26.39 in - 24.94 in = 1.45 in
This means that the CG is 1.45 inches out of limits.
If you want to learn more about percentages, you can read:
brainly.com/question/14345924
Explanation:
Water does expand with heat (and contract with cooling), but the amount of expansion is pretty small. So when you boil a can filled with water and seal it, the water will contract slightly as it cools. The can may kink slightly, but that will be it. Actually, most likely the only things you will be able to see is then top and bottom will be sucked in and go concave. Just like a commercial can of beans.
Now if you have a can with a little water and a big air space, things are completely different.
As the water boils, water vapour is given off. Steam. Let it boils for a minute just to make sure (nearly) all the air is expelled and the can is filled with steam.
Now when you put the lid on and cool the can, that steam condenses back to water, and goes from filling the can to a few drops of water. The can is now filled (if that is the right word) with a near vacuum, The air pressure, 15 lbs/square inch, will be pressing on every surface of the can, with nothing inside the can to resist it.
The can will crumple before your eyes.