Answer:
A. when the mass has a displacement of zero
Explanation:
The velocity of a mass on a spring can be calculated by using the law of conservation of energy. In fact, the total energy of the mass-spring system is equal to the sum of the elastic potential energy (U) of the spring and the kinetic energy (K) of the mass:

where
k is the spring constant
x is the displacement of the mass with respect to the equilibrium position of the spring
m is the mass
v is the velocity of the mass
Since the total energy E must remain constant, we can notice the following:
- When the displacement is zero (x=0), the velocity must be maximum, because U=0 so K is maximum
- When the displacement is maximum, the velocity must be minimum (zero), because U is maximum and K=0
Based on these observations, we can conclude that the velocity of the mass is at its maximum value when the displacement is zero, so the correct option is A.
Answer:
The value is
Explanation:
From the question we are told that
The power output from the sun is 
The average wavelength of each photon is 
Generally the energy of each photon emitted is mathematically represented as

Here h is the Plank's constant with value 
c is the speed of light with value 
So
=>
Generally the number of photons emitted by the Sun in a second is mathematically represented as

=> 
=>
Answer:
The force of gravity on a 700 kg satellite if its 10 km above Earth's surface is given by
=
= 3984378 m / 
Explanation:
The force of gravity on a 700 kg satellite if its 10 km above Earth's surface is given by
=
= 3984378 m / 
Answer:
Refractive motion is the impact of a light wave that travels from medium to medium in an angle away from normal, where the direction of light varies. Light is refracted when it crosses the air-to-glass interface and moves slower.
Explanation:
Refractive motion is the impact of a light wave that travels from medium to medium in an angle away from normal, where the direction of light varies. Light is refracted when it crosses the air-to-glass interface and moves slower.
Hope this helps.
Answer:
The magnitude is:
The direction of E is in the negative x-direction.
Explanation:
The electric field equation is:

Where:
- Q is the charge (we can choose the electron or the proton)
- r is the distance (in our case is at the midpoint 973/2 nm)
- k is the Coulomb constant (
)
Using the electron charge (
)
The magnitude is:
The direction of E is in the negative x-direction.
I hope it helps you!