Answer:
B. 9.0 V
Explanation:
In parallel circuits, the voltage across each circuit is the same across each component, which is also equal to the total voltage of the power supplied. So in this case, the voltage across each resistor is still 9.0V.
The voltage only changes when the resistors can connected in series.
Let R be radius of Earth with the amount of 6378 km h = height of satellite above Earth m = mass of satellite v = tangential velocity of satellite
Since gravitational force varies contrariwise with the square of the distance of separation, the value of g at altitude h will be 9.8*{[R/(R+h)]^2} = g'
So now gravity acceleration is g' and gravity is balanced by centripetal force mv^2/(R+h):
m*v^2/(R+h) = m*g' v = sqrt[g'*(R + h)]
Satellite A: h = 542 km so R+h = 6738 km = 6.920 e6 m g' = 9.8*(6378/6920)^2 = 8.32 m/sec^2 so v = sqrt(8.32*6.920e6) = 7587.79 m/s = 7.59 km/sec
Satellite B: h = 838 km so R+h = 7216 km = 7.216 e6 m g' = 9.8*(6378/7216)^2 = 8.66 m/sec^2 so v = sqrt(8.32*7.216e6) = 7748.36 m/s = 7.79 km/sec
Explanation:
F = ma is the formula of Newton's Second Law of Motion. Newton's Second Law of Motion is defined as Force is equal to the rate of change of momentum. For a constant mass, force equals mass times acceleration.
...
Answer: The skier has potential and kinetic energy.
Explanation: This is what I found from a different user on this website
First
let us imagine the projectile launched at initial velocity V and at angle
θ relative to the horizontal. (ignore wind resistance)
Vertical component y:
The
initial vertical velocity is given as Vsinθ
The moment the projectile reaches the maximum
height of h, the vertical velocity
will be 0, therefore the time t taken to attain this maximum height is:
h = Vsinθ - gt
0 = Vsinθ - gt
t = (Vsinθ)/g
where
g is acceleration due to gravity
Horizontal component x:
The initial horizontal velocity is given as Vcosθ. However unlike
the vertical component, this horizontal velocity remains constant because this is unaffected by gravity. The time to travel the
horizontal distance D is twice the value of t times the horizontal velocity.
D = Vcosθ*[(2Vsinθ)/g]
D = (2V²sinθ cosθ)/g
D = (V²sin2θ)/g
In order for D (horizontal distance) to be
maximum, dD/dθ = 0
That is,
2V^2 cos2θ / g = 0
And since 2V^2/g must not be equal to zero, therefore cos(2θ) = 0
This is true when 2θ = π/2 or θ = π/4
Therefore it is now<span> shown that the maximum horizontal travelled is attained when
the launch angle is π/4 radians, or 45°.</span>