Answer:
1/i + 1/o = 1/f thin lens equation
i = 33 * 8.9 / (33 - 8.9) = 12.2 cm to right of first lens
27 - 12.2 = 14.8 cm to left of second lens
i = 14.8 * 8.9 / (14.8 - 8.9) = 22,3 cm to right of second lens
We know, length of segment wave is half the wavelength .
Let, wavelength of wave is
.
So, length of segment will be
.
Now, it is given that the string vibrates in four segments.
So,

Speed can be given by :

Therefore, the wave speed in the string is 120 m/s.
Answer: unless it's acted upon by an external force
Explanation: Newton first law of motion State that an object will continue in it state of rest or in motion, unless it is been acted upon by an external force
Mnanan anaw anwkkww wjakana akkqna akaoaman akamakq
Answer:
2.51 m/s
Explanation:
Parameters given:
Angle, A = 33°
Mass, m = 90kg
Inclined distance, D = 2m
Force, F = 600N
Initial speed, u = 2.3m/s
From the relationship between work and kinetic energy, we know that:
Work done = change in kinetic energy
W = 0.5m(v² - u²)
We also know that work done is tẹ product of force and distance, hence, net work done will be the sum of the total work done by the force from the students and gravity.
Hence,
W = F*D*cosA - w*D*sinA
w = m*9.8 = weight
=> W = 600*2*cos33 - 90*9.8*2*sin33
W = 45.7J
=> 45.7 = 0.5*m*(v² - u²)
45.7 = 0.5*90*(v² - 2.3²)
45.7 = 45(v² - 5.29)
=> v² - 5.29 = 1.016
v² = 6.306
v = 2.51 m/s
The final velocity is 2.51 m/s