With arms outstretched,
Moment of inertia is I = 5.0 kg-m².
Rotational speed is ω = (3 rev/s)*(2π rad/rev) = 6π rad/s
The torque required is
T = Iω = (5.0 kg-m²)*(6π rad/s) = 30π
Assume that the same torque drives the rotational motion at a moment of inertia of 2.0 kg-m².
If u = new rotational speed (rad/s), then
T = 2u = 30π
u = 15π rad/s
= (15π rad/s)*(1 rev/2π rad)
= 7.5 rev/s
Answer: 7.5 revolutions per second.
Answer:
a = 8.06 m/s²
Explanation:
The acceleration of this car can be found using the first equation of motion:

where,
a = acceleration = ?
vf = final speed = 26.8 m/s
vi = initial speed = 0 m/s
t = time = 3.323 s
Therefore,

<u>a = 8.06 m/s²</u>
I = MR^2
The Attempt at a Solution:::
I total = (3M)(0)^2 + (2M)(L/2)^2 + (M)(L)^2
I total = 3ML^2/2
It says the answer is 3ML^2/4 though.
⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔
mark it as brainliest.... ✌✌✌
it would be..... C
sorry if I am wrong I tryed to think, At least I try!
I beleive she isnt doing any work due to holding the box motionless, you must be exerting a force in the direction of the box motion. If she is just standing there holding the box their isn't no work becuase no distance has been covered. work = force = distance.