The balanced chemical reaction would be:
KHC8H4O4<span> (aq) + </span>NaOH<span> (aq) → NaKC8H4O4 (aq) + H2O.
The concentration of the NaOH is equal 0.1 M. We use this and the volume given above to determine the mass of KH</span>C8H4O4. We do as follows:
0.1 mol / L NaOH (.015 L) ( 1 mol KHC8H4O4 / 1 mol NaOH) (204 g / 1 mol) = 0.306 g KHC8H4O4
Answer:
Absolutely True :) cause we use it all the time
Explanation:
It is known that molarity is the number of moles present in a liter of solution.
Molarity = 
Also, number of moles equal mass divided by molar mass. And, molar mass of calcium is 40.07 g/mol.
No. of moles = 
= 
= 0.025 mol
Therefore, calculate the molarity as follows.
Molarity = 
=
= 0.025 M
Thus, we can conclude that molarity of
in milk is 0.025 M.
Answer:
44,901 kilo Joule heat is released when
grams of ammonia is produced.
Explanation:
Moles of ammonia gas produced :

According to reaction, when 2 moles of ammonia are produced 9.18 kilo joules of energy is also released.
So, When 978.235 moles of ammonia gas is produced the energy released will be:

(negative sign indicates that energy is released as heat)
44,901 kilo Joule heat is released when
grams of ammonia is produced.
A calorimeter experiment is a set-up that provides insulation so that no heat escapes to the surroundings and all energy can be accounted for. It can be done at either constant volume or constant pressure. So, the answer to this is knowing the mass of water, the specific heat which is an empirical data, and the change in temperature which can be measured using a thermometer. This experiment could measure the mass of an unknown substance added or the specific heat of the substance or the calorimeter. <em>The answer is D.</em>