second compound
Let molar mass of x is = X
Let molar mass of y is = Y
Moles of x in second compound = Mass / molar mass = 7 / X
Moles of y in second compound = Mass / molar mass = 4.5 / Y
For second compound
7 / X : 4.5/ Y = 1:1
Therefore
X / Y = 7/4.5
Y / X = 4.5/ 7
The mass of x in first compound = 14g
moles of x in first compound = 14/X
Mass of y in first compound = 3
moles of y in first compound = 3 / Y
14 / X : 3/ Y = 14Y / 3X = 14 X 4.5 / 3 X 7 = 3 :1
Thus molar ratio in first compound = moles of x / Moles of y = 3:2
Formula = x3y
Answer: The pressure in atmospheres is 0.674 in the container if the temperature remains constant.
Explanation:
Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
where,
= initial pressure of gas = 205 kPa
= final pressure of gas = ?
= initial volume of gas = 4.0 L
= final volume of gas = 12000 ml = 12 L (1L=1000ml)
(1kPa=0.0098atm)
Therefore, the pressure in atmospheres is 0.674 in the container if the temperature remains constant.
Answer:
im pretty sure its a push or pull thing
Explanation:
Tensional stress is the stress that tends to pull something apart. It is the stress component perpendicular to a given surface, such as a fault plane, that results from forces applied perpendicular to the surface or from remote forces transmitted through the surrounding rock.
Ok we can use boyle’s law (stating that P is proportional to V) to make the equation (P1V1) =(P2V2).
once we’ve done this, we can plug in the numbers:
(800•500) = (200•V2)
and then we get that
V2= 2000 ml
hope this helps!! :)