Explanation:
The given reaction equation is as follows.

So, rate constants for different reactants and products written as follows.

As per the reaction equation, the stoichiometric coefficients of reactants and products are as follows.
A = -2
B = -1
C = 1
Therefore,


Hence,
= 
= 12.5 
Thus, we can conclude that
and
are 12.5
.
Answer:
16.82 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm (P = 1.0 atm, STP conditions).
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = mass/molar mass = (12.0 g)/(15.99 g/mol) = 0.7505 mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 0.0°C + 273 = 273.0 K, STP conditions).
<em>∴ V = nRT/P</em> = (0.7505 mol)(0.0821 L.atm/mol.K)(273.0 K)/(1.0 atm) = <em>16.82 L.</em>
I think A would be the correct answer to this question.
Answer:
Sample B
Explanation:
When heat is added to a substance, the molecules and atoms vibrate faster. Since the speed for Sample B is higher this means it has a higher temperature as well.
Because the molecules are more spread apart.
(gas spread)