From the absorption spectra of a gas, we can see the amount of thermal energy the gas contains (option D).
<h3>What is the absorption spectra?</h3>
The absorption spectra shows us the energy that is taken in by a gas. We know that when a gas is heated, it absorbs energy which shows up in its absorption spectra.
Thus, from the absorption spectra of a gas, we can see the amount of thermal energy the gas contains.
Learn more about absorption spectra:brainly.com/question/4239971
#SPJ1
Answer:
The new volume of the gas is 21 L.
Explanation:
Volume of a gas is inversely proportional to its pressure at constant temperature such that,

or

We have,

It is required to find V₂. Using above law or Boyle's law such that :

So, the new volume of the gas is 21 L.
Answer:
Physical changes
Explanation:
Changes in the state of matter are physical changes.
First, the material is made up of the same components that is was before it changed states.
The physical properties of the material changed, but its chemical composition did not, meaning that is is a physical change.
Answer:
C, 42g
Explanation:
In thermal equilibrium, both bodies (metal pellet and water) both have the same final temperature (46.3°C).
Assuming no heat is lost to surroundings,
the energy lost from metal pellet = energy gained for water
Since E = mc∆T
(energy = mass x specific heat capacity x temperature change)
mc∆T (metal pellet) = mc∆T (water)
100 x 0.568 x (116-46.3) = m 4.184 (46.3 - 23.8)
3958.96 = 94.14m
m = 42g
Answer:

Explanation:
Hello there!
In this case, since these problems about gas mixtures are based off Dalton's law in terms of mole fraction, partial pressure and total pressure, we can write the following for hydrogen, we are given its partial pressure:

And can be solved for the total pressure as follows:

However, we first calculate the mole fraction of hydrogen by subtracting that of nitrogen to 1 due to:

Then, we can plug in to obtain the total pressure:

Regards!