Answer:
3.51× 10²³ formula units
Explanation:
Given data:
Mass of CaO = 32.7 g
Number of formula units = ?
Solution:
First of all we will calculate the number of moles.
Number of moles = mass/molar mass
Number of moles = 32.7 g/ 56.1 g/mol
Number of moles = 0.583 mol
Number of formula units:
1 mole = 6.022 × 10²³ formula units
0.583 mol × 6.022 × 10²³ formula units / 1 mol
3.51× 10²³ formula units
The number 6.022 × 10²³ is called Avogadro number.
The answer is <span>Silicon, it also forms 4 bonds. Usually elements in the same group or vertical column in the periodic table all have similar chemical bonding properties. </span><span>It is just below carbon, so it has more similarities of properties with carbon. </span>
Answer:
k(+)
NH4(+)
Al3(+)
Explanation:
cations are those elements who donate their electrons and we put a positive charge on it and receivers get negative charge and they are called anion.....Thank you so,much Please let me know how you feel and is helps you or not....
The amount of heat energy needed to convert 400 g of ice at -38 °C to steam at 160 °C is 1.28×10⁶ J (Option D)
<h3>How to determine the heat required change the temperature from –38 °C to 0 °C </h3>
- Mass (M) = 400 g = 400 / 1000 = 0.4 Kg
- Initial temperature (T₁) = –25 °C
- Final temperature (T₂) = 0 °
- Change in temperature (ΔT) = 0 – (–38) = 38 °C
- Specific heat capacity (C) = 2050 J/(kg·°C)
- Heat (Q₁) =?
Q = MCΔT
Q₁ = 0.4 × 2050 × 38
Q₁ = 31160 J
<h3>How to determine the heat required to melt the ice at 0 °C</h3>
- Mass (m) = 0.4 Kg
- Latent heat of fusion (L) = 334 KJ/Kg = 334 × 1000 = 334000 J/Kg
- Heat (Q₂) =?
Q = mL
Q₂ = 0.4 × 334000
Q₂ = 133600 J
<h3>How to determine the heat required to change the temperature from 0 °C to 100 °C </h3>
- Mass (M) = 0.4 Kg
- Initial temperature (T₁) = 0 °C
- Final temperature (T₂) = 100 °C
- Change in temperature (ΔT) = 100 – 0 = 100 °C
- Specific heat capacity (C) = 4180 J/(kg·°C)
- Heat (Q₃) =?
Q = MCΔT
Q₃ = 0.4 × 4180 × 100
Q₃ = 167200 J
<h3>How to determine the heat required to vaporize the water at 100 °C</h3>
- Mass (m) = 0.4 Kg
- Latent heat of vaporisation (Hv) = 2260 KJ/Kg = 2260 × 1000 = 2260000 J/Kg
- Heat (Q₄) =?
Q = mHv
Q₄ = 0.4 × 2260000
Q₄ = 904000 J
<h3>How to determine the heat required to change the temperature from 100 °C to 160 °C </h3>
- Mass (M) = 0.4 Kg
- Initial temperature (T₁) = 100 °C
- Final temperature (T₂) = 160 °C
- Change in temperature (ΔT) = 160 – 100 = 60 °C
- Specific heat capacity (C) = 1996 J/(kg·°C)
- Heat (Q₅) =?
Q = MCΔT
Q₅ = 0.4 × 1996 × 60
Q₅ = 47904 J
<h3>How to determine the heat required to change the temperature from –38 °C to 160 °C</h3>
- Heat for –38 °C to 0°C (Q₁) = 31160 J
- Heat for melting (Q₂) = 133600 J
- Heat for 0 °C to 100 °C (Q₃) = 167200 J
- Heat for vaporization (Q₄) = 904000 J
- Heat for 100 °C to 160 °C (Q₅) = 47904 J
- Heat for –38 °C to 160 °C (Qₜ) =?
Qₜ = Q₁ + Q₂ + Q₃ + Q₄ + Q₅
Qₜ = 31160 + 133600 + 167200 + 904000 + 47904
Qₜ = 1.28×10⁶ J
Learn more about heat transfer:
brainly.com/question/10286596
#SPJ1
It's A. volume
Pressure =
![\frac{moles * const * temperature}{volume}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bmoles%20%2A%20const%20%2A%20temperature%7D%7Bvolume%7D%20)
with const depends on the chosen unit of volume
I think so...