In a real system of levers, wheels, or pulleys, the AMA is less than the IMA because of friction.
AMA (Actual mechanical advantage) is found by dividing output force by effort force. The actual mechanical advantage will always be less than the ideal mechanical advantage. The ideal mechanical advantage assumes perfect efficiency which doesn't account for friction, while actual mechanical advantage does. Therefore; the IMA is always greater than the actual mechanical advantage because all machines must overcome friction.
Magnitude of the force of tension: 139 N
Explanation:
The surface of the ramp here is assumed to be the positive x-direction.
To solve this problem and find the magnitude of the force of tension, we have to analyze only the situation along the x-direction, since the force of tension lie in this direction.
There are three forces acting along the x-direction:
- The force of tension,
, acting up along the plane - The force of friction,
, acting down along the plane - The component of the weight in the x-direction,
, acting down along the plane
We know that the magnitude of the weight is

So its x-component is

The net force along the x-direction can be written as

And therefore, since the net force is 98 N, we can find the magnitude of the force of tension:

Learn more about inclined planes:
brainly.com/question/5884009
#LearnwithBrainly
The offspring of an asexual organism (since asexual reproduction only requires one parent) will be completely identical to the parent, like bacteria or fungi. The offspring of a sexual organism (since sexual reproduction requires two organisms) will be a combination of both parents, like animals or (some) flowers.
Answer:
500J
Explanation:
The arrow will have an energy of 500J after it has been released from its state of rest.
This is compliance with the law of conservation of energy which states that "in every system, energy is neither created nor destroyed but transformed from one form to another".
- The energy at rest which is the potential energy is 500J
- This energy will be converted to kinetic energy in total after the arrow has been released.
- This way, no energy is lost and we can account for the energy transformations occurring.
Answer:
a. k = (1/k₁ + 1/k₂)⁻¹ b. k = (1/k₁ + 1/k₂ + 1/k₃)⁻¹
Explanation:
Since only one force F acts, the force on spring with spring constant k₁ is F = k₁x₁ where x₁ is its extension
the force on spring with spring constant k₂ is F = k₂x₂ where x₁ is its extension
Let F = kx be the force on the equivalent spring with spring constant k and extension x.
The total extension , x = x₁ + x₂
x = F/k = F/k₁ + F/k₂
1/k = 1/k₁ + 1/k₂
k = (1/k₁ + 1/k₂)⁻¹
B
The force on spring with spring constant k₃ is F = k₃x₃ where x₃ is its extension
Let F = kx be the force on the equivalent spring with spring constant k and extension x.
The total extension , x = x₁ + x₂ + x₃
x = F/k = F/k₁ + F/k₂ + F/k₃
1/k = 1/k₁ + 1/k₂ + 1/k₃
k = (1/k₁ + 1/k₂ + 1/k₃)⁻¹