Answer:
1.04 s
Explanation:
The computation is shown below:
As we know that
t = t' × 1 ÷ (√(1 - (v/c)^2)
here
v = 0.5c
t = 1.20 -s
So,
1.20 = t' × 1 ÷ (√(1 - (0.5/c)^2)
1.20 = t' × 1 ÷ (√(1 - (0.5)^2)
1.20 = t' ÷ √0.75
1.20 = t' ÷ 0.866
t' = 0.866 × 1.20
= 1.04 s
The above formula should be applied
Answer:
v=12.5 i + 12.5 j m/s
Explanation:
Given that
m₁=m₂ = m
m₃ = 2 m
Given that speed of the two pieces
u₁=- 25 j m/s
u₂ =- 25 i m/s
Lets take the speed of the third mass = v m/s
From linear momentum conservation
Pi= Pf
0 = m₁u₁+m₂u₂ + m₃ v
0 = -25 j m - 25 i m + 2 m v
2 v=25 j + 25 i m/s
v=12.5 i + 12.5 j m/s
Therefore the speed of the third mass will be v=12.5 i + 12.5 j m/s
Oxygen has<span> a higher electro negativity that then Sulfur, so Sulfur </span>will<span> " lose" electrons to Oxygen and that </span>is<span> the electrons </span>will be<span> pulled closer to the Oxygen causing, for oxygen to </span>have a negative<span> charge and the Sulfur to </span>have<span> a positive charge</span>
Answer:
0.67 s
Explanation:
This is a simple harmonic motion (SHM).
The displacement,
, of an SHM is given by

A is the amplitude and
is the angular frequency.
We could use a sine function, in which case we will include a phase angle, to indicate that the oscillation began from a non-equilibrium point. We are using the cosine function for this particular case because the oscillation began from an extreme end, which is one-quarter of a single oscillation, when measured from the equilibrium point. One-quarter of an oscillation corresponds to a phase angle of 90° or
radian.
From trigonometry,
if A and B are complementary.
At
, 


So

At
, 





The period,
, is related to
by

Answer:
4 seconds
Explanation:
Given:
v₀ = 20 m/s
v = 0 m/s
a = -5 m/s²
Find: t
v = at + v₀
0 m/s = (-5 m/s²) t + 20 m/s
t = 4 s