In nomine patris, et filii, et spiritus sancti.
Answer:
Two cars of equal weight and braking ability are travelling along the same road but combined with other factors it could mean the difference between life.
Answer:
0.51 m
Explanation:
Using the principle of conservation of energy, change in potential energy equals to the change in kinetic energy of the spring.
Kinetic energy, KE=½kx²
Where k is spring constant and x is the compression of spring
Potential energy, PE=mgh
Where g is acceleration due to gravity, h is height and m is mass
Equating KE=PE
mgh=½kx²
Making x the subject of formula

Substituting 9.81 m/s² for g, 1300 kg for m, 10m for h and 1000000 for k then

Answer:
The distance is 0.53 m.
Explanation:
Given that,
Target distance = 100.0 m
Speed of bullet = 300 m/s
We need to calculate the total time
Using formula of time

Put the value into the formula


Now, consider vertical motion of bullet.
Initial velocity of bullet in vertical direction = 0 m/s
We need to calculate the vertically distance
Using equation of motion

Put the value in the equation


Hence, The distance is 0.53 m.
Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V