Answer:
b) 338 N
Explanation: let m be the mass of the gymnast and a be the acceleration of the gymnast.
the force required to accelerate the gymnast is given by:
F = m×a
= (45.0)×(7.50)
= 337.5 N
Therefore, the force a trampoline has to apply is 138 N.
Answer:
Explanation:
Using the formula for calculating range expressed as;
R = U√2H/g
U is the speed = 300m/s
H is the maximum height = 78.4m
g is the acceleration due to gravity = 9.8m/s²
Substitute into the fromula;
R = 300√2(78.4)/9.8
R = 300 √(16)
R = 300*4
R = 1200m
Hence the projectile travelled 1200m before hitting the ground
Well, if you're using the law to work with periods of Earth satellites,
then the most convenient unit is going to be 'hours' for the largest
orbits, or 'minutes' for the LEOs.
But if you're using it to work with periods of planets, asteroids, or
comets, then you'd be working in days or years.
Answer:
200 N = 200 Newtons
Explanation:
Just use the formula F = m*a
F = Force in Newtons
m = mass and is 20 kg
a = acceleration and is 10 m/s^2
F = 20 * 10
F = 200 Newtons.
Answer:
Explanation:
We know that the pressure can be calculated in the following way:
p = d·g·h
with d being the density of the water, g the gravitational acceleration and h the depth.
Also d of the water = 1000 kg/m^3 circa and g = 9.8 m/s^2 circa
117,500 Pa = 1000kg/m³ · 9.8m/s² · h
Therefore h = 11,9 m