Responder:
A) ω = 565.56 rad / seg
B) f = 90Hz
C) 0.011111s
Explicación:
Dado que:
Velocidad = 5400 rpm (revolución por minuto)
La velocidad angular (ω) = 2πf
Donde f = frecuencia
ω = 5400 rev / minuto
1 minuto = 60 segundos
2πrad = I revolución
Por lo tanto,
ω = 5400 * (rev / min) * (1 min / 60s) * (2πrad / 1 rev)
ω = (5400 * 2πrad) / 60 s
ω = 10800πrad / 60 s
ω = 180πrad / seg
ω = 565.56 rad / seg
SI)
Dado que :
ω = 2πf
donde f = frecuencia, ω = velocidad angular en rad / s
f = ω / 2π
f = 565.56 / 2π
f = 90.011669
f = 90 Hz
C) Periodo (T)
Recordar T = 1 / f
Por lo tanto,
T = 1/90
T = 0.0111111s
Answer:
Yes! Thinking about it graphically a position vs time graph models meters per second in most cases, making every point on the line have the units m/s. If we want the find the slope we are finding the change between each point and those units would change to m/s/s or m/s^2 giving us the same units for acceleration. Simply put, slope of a velocity graph gives us acceleration.
Explanation:
When an elevator is accelerating downward, the normal force is equal to mg-ma (hence you feel a little lighter when accelerating downwards)
Therefore, the upward force of the elevator floor on the person must be less than 750N
In cold winter day, the body temperature falls down from normal temperature of 98.6°F (37°C) to 95°F (35°C). In winter body losses heat faster than it generates heat. If the temperature fall further below 95°F (35°C), it is emergency condition known as Hypothermia. One has to consult doctor in this case.
In summer hot days, body evaporates water in the form of sweat, in order to remain itself cool. Rise of temperature up to 100°F is normal. It is recommended to hydrate body to maintain temperature in summer days.
Answer:
c = 1163.34 J/kg.°C
Explanation:
Specific heat capacity:
"Specific heat capacity is the amount of heat energy required to raise the temperature of a substance per unit of mass. The specific heat capacity of a material is a physical property."
Use this equation:
mcΔT = ( mw c + mAl cAl ) ΔT'
Rearranging the equation to find the specific heat (c) you get this:
c = (( mw c + mAl cAl ) ΔT') / (mΔT)
c = (( 0.285 (4186) + (0.15)(900)) (32 -25.1)) / ((0.125) (95 - 32))
c = 1163.34 J/kg.°C