The time taken for the two balls to hit each other is 8 s.
The given parameters:
- <em>Acceleration of the rocket, a = 2 m/s²</em>
- <em>Length of the chamber, s = 4 m</em>
- <em>Speed of the first ball, = V1 = 0.3 m/s</em>
- <em>Speed of the second ball, V2 = 0.2 m/s</em>
The time taken for the two balls to hit each other is calculated by applying relative velocity formula as shown below;
Thus, the time taken for the two balls to hit each other is 8 s.
Learn more about relative velocity here: brainly.com/question/17228388
Answer:
v_max = (1/6)e^-1 a
Explanation:
You have the following equation for the instantaneous speed of a particle:
(1)
To find the expression for the maximum speed in terms of the acceleration "a", you first derivative v(t) respect to time t:
(2)
where you have use the derivative of a product.
Next, you equal the expression (2) to zero in order to calculate t:
For t = 1/6 you obtain the maximum speed.
Then, you replace that value of t in the expression (1):
hence, the maximum speed is v_max = ((1/6)e^-1)a
Answer:
The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Explanation:
Under the assumption that no external forces are exerted on both the small object and the big object, whose situation is described by the Principle of Momentum Conservation:
(1)
Where:
, - Initial and final momemtums of the small object, measured in kilogram-meters per second.
, - Initial and final momentums of the big object, measured in kilogram-meters per second.
If we know that , and , then the final momentum of the big object is:
The magnitude of the large object's momentum change is:
The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Answer:
D) True. This is what creates the body weight
Explanation:
Let's write Newton's second law for this case. For inclined planes the reference system takes one axis parallel to the plane (x axis) and the other perpendicular to the plane (y axis)
X axis
Wx -fr = ma
Y Axis
N - Wy = 0
With trigonometry we can find the components of weight
sin θ = Wₓ / W
cos θ = / W
Wₓ = W sin θ
= W cos θ
W sin θ - fr = ma
From this expression as it indicates that the body is descending the force greater is the gravity that create the weight of the body
Let's examine the answers
A False This force does not apply because it is not a spring
B) False. It is balanced at all times with the component (Wy) of the weight
C) False. For there to be a rope, if it exists you should be less than the weight component for the block to lower
D) True. This is what creates the body weight
E) False. The cutting force occurs for force applied at a single point and gravity is applied at all points