Solution: 85.11 m
Given:
acceleration of the car, 
initial velocity,
final velocity, 
we need to find the displacement (s) of the car.
we would use the equation of motion:

hence, the displacement done by the car is = 85.11 m
Answer:
single replacement
Explanation:
In the question it says one element replaces another element which means there is only one replacement.
Answer:
c. above the point of unit elasticity.
Explanation:
The elastic portion of the downward-sloping straight-line demand curve lies above the point of unit elasticity. Supply and demand are fundamental concept in economics. The demand curve shows how much of a good people will want at a different prices. The demands curves illustrates the intuition why people purchase a good for a lower price. For the demand curve, the price is always shown on the vertical axis and the demand curve is shown on the horizontal axis. Thus , the quantity demanded increases as the price gets lower. However, the price elasticity of the demand curve varies along the demand curve. This is because there is a key distinction between the gradient and the elasticity. The gradient which is the slope of the line is always the same in the demand curve but elasticity of the demand changes in the percentage of the quantity demand. Therefore, elasticity will vary along the downward-sloping straight - line demand curve. So, in a downward-sloping straight-line demand curve, the elastic portion is usually above the point of unit elasticity
The two displacement functions are
x₁ = 4t
x₂ = -161 + 48t - 4t²
where
x₁, x₂ are in meters
t is time, s
The distance between the two objects is
x = x₁ - x₂
= 4t + 161 - 48t + 4t²
x = 4t² - 44t + 161
Write this equation in the standard form for a parabola.
x = 4[t² - 11t] + 161
= 4[ (t - 5.5)² - 5.5² ] + 161
x = 4(t-5)² + 40
Ths is a parabola that faces up and has its vertex (lowest point) at (5, 40).
Therefore the closest approach of the two objects is 40 m.
The graph of x versus t confirms the result.
Answer: The distance of the closest approach is 40 m.