need speed of sound on lhs
Your answer is going to be Appellate jurisdiction.
Answer:
The constant angular acceleration of the centrifuge = -252.84 rad/s²
Explanation:
We will be using the equations of motion for this calculation.
Although, the parameters of this equation of motion will be composed of the angular form of the normal parameters.
First of, we write the given parameters.
w₀ = initial angular velocity = 2πf₀
f₀ = 3650 rev/min = (3650/60) rev/s = 60.83 rev/s
w₀ = 2πf₀ = 2π × 60.83 = 382.38 rad/s
θ = 46 revs = 46 × 2π = 289.14 rad
w = final angular velocity = 0 rad/s (since the centrifuge come rest at the end)
α = ?
Just like v² = u² + 2ay
w² = w₀² + 2αθ
0 = 382.38² + [2α × (289.14)]
578.29α = -146,214.4644
α = (-146,214.4644/578.29)
α = - 252.84 rad/s²
Hope this Helps!!!
Weight = mass * gravity = 60 kg * 3.75 m/s² = 225 N
<span>Option D.</span>
Answer:
6.0 m below the top of the cliff
Explanation:
We can find the velocity at which the ball dropped from the cliff reaches the ground by using the SUVAT equation

where
u = 0 (it starts from rest)
g = 9.8 m/s^2 (acceleration of gravity, we assume downward as positive direction)
h = 24 m is the distance covered
Solving for h,

So the ball thrown upward is launched with this initial velocity:
u = 21.7 m/s
From now on, we take instead upward as positive direction.
The vertical position of the ball dropped from the cliff at time t is

While the vertical position of the ball thrown upward is

The two balls meet when

So the two balls meet after 1.11 s, when the position of the ball dropped from the cliff is

So the distance below the top of the cliff is
