The main functions of the cell wall are to provide structure, support, and protection for the cell.
The reaction between hydrogen and oxygen to form water is given as:

The balanced reaction is:

According to the balanced reaction,
4 g of hydrogen (
) reacts with 32 g of oxygen (
).
So, oxygen reacted with 29.4 g of hydrogen is:

Hence, the mass of oxygen that is reacted with 29.4 g of hydrogen is 235.2 g.
Answer:
Explanation:
The<em> heat</em> to <em>vaporize</em> a l<em>iquid</em> is equal to the amount of liquid in moles multiplied by the specific <em>heat of vaporiztion</em> per mole.
First, calculate the number of moles in 35.5g of <em>butane</em>.
- Molar mass of butane: 58.124 g/mol
- Number of moles = mass in grams/molar mass
- Number of moles = 35.5g / 58.124g/mol = 0.6107632mol
Now, calculate the heat to vaporize that amount of <em>liquid butane</em>:
- Heat = number of moles × specific heat of vaporization
- Heat = 0.6107632mol × 21.3kJ/mol = 13.0 kJ
The answer must be reported with 3 significant figures.
Answer:
The atmosphere acts like a multi-layer shield that protects Earth from dangerous solar radiation. ... The stratospheric ozone layer absorbs ultraviolet (UV) radiation, preventing dangerous UV rays from hitting Earth's surface and harming living organisms. (Just look it up)
Explanation:
I hope this helps!
Answer:
Model A
Explanation:
Model A represents an atom that is more reactive than the others represented.
Valence electrons actually determine the reactivity of elements. They also determine the properties of elements.
Elements with one valence electron are highly reactive because they need low energy to remove them. They can either gain more electrons to become stable or they share/give out their electrons.
Therefore, Model A is the correct answer because it has one valence electron and its valence electron is farther from the nucleus thereby this makes it more reactive.