Answer:
0.025M
Explanation:
As you must see in your graph, each concentration of the experiment has an absorbance. Following the Beer-Lambert's law that states "The absorbance of a solution is directely proportional to its concentration".
At 0.35 of absorbance, the plot has a concentration of:
<h3>0.025M</h3>
A free-radical substitution reaction is likely to be responsible for the observations. The reaction mechanism of a reaction like this can be grouped into three phases:
- Initiation; the "light" on the mixture deliver sufficient amount of energy such that the halogen molecules undergo homologous fission. It typically takes ultraviolet radiation to initiate fissions of the bonds.
- Propagation; free radicals react with molecules to produce new free radicals and molecules.
- Termination; two free radicals combine and form covalent bonds to produce stable molecules. Note that it is possible for two carbon-containing free-radicals to combine, leading to the production of trace amounts of long carbon chains in the product.
Initiation

where the big black dot indicates unpaired electrons attached to the atom.
Propagation






Termination

10HSiCl3 + 15H2O = H10Si10O15 + 30HCl
Hello,
Here is your answer:
The proper answer to this question is option D "<span>sodium hydroxide".
Here is how:
Sodium Hydroxide its a white substance that is a </span><span>electrolyte.
Your answer is D.
If you need anymore help feel free to ask me!
Hope this helps!</span>
To balance the following chemical equation, make a tally or a count of each of the atoms on both sides of the reaction, and make sure that those atoms are equal on both the reactant and product side.
AL2O3 + HCl => ALCl3 + H2O
Left side. Right side
AL = 2. AL = 1
O = 3 Cl = 3
H = 1. H = 2
Cl = 1. O = 1
First balance the metal atoms, aluminum, then hydrogen and then oxygen.
Balanced equation :
AL2O3 + 6HCl => 2ALCl3 + 3H2O.
Left side. Right side
AL = 2 AL = 2
O = 3 Cl = 6
H = 6 H = 6
Cl = 6 O = 3.