Answer
given,
mass of copper rod = 1 kg
horizontal rails = 1 m
Current (I) = 50 A
coefficient of static friction = 0.6
magnetic force acting on a current carrying wire is
F = B i L
Rod is not necessarily vertical


the normal reaction N = mg-F y
static friction f = μ_s (mg-F y )
horizontal acceleration is zero


B_w = B sinθ
B_d = B cosθ
iLB cosθ= μ_s (mg- iLB sinθ)





B = 0.1 T
Answer:
a) 1.2*10^{-3}cos(1.25t)
b) 0.49mV
Explanation:
a) The coil rotates periodically with period T. Hence, we can write the variation of the magnetic flux with a sinusoidal function, and with max flux NAB. Thus, we have that:

where we have used the values given by the information of the problem for N B and A.
b)
the emf is given by:

hope this helps!!
Maybe the picture helps. The blue block represents the cart with a mass of 3 kg. The person(black block) is pulling the cart to the right with a force F so that the acceleration a is 2 m/s². According to Newton's 2nd law: F = m*a.
Answer:
8 KJ/ s
Explanation:
Heat pumps Transfer thermal energy through absorbing of heat that comes from cold region and then release to warmer area by utilizing external power.
The coefficient of performance known as COP provide the ratio of both heating and cooling that are supplied to required work.
✓QH=The rate at which heat is produced = ?
✓COP= Coefficient of performance of a residential heat pump = 1.6
✓ W(in)= power consumption= 5KW
QH=The rate at which heat is produced=[Coefficient of performance of a residential heat pump] × [power consumption]
= 1.6 × 5KW
=8 KJ/ s
This is more chemistry. But it is a process called fractional distillation, and it basically separates the long chained hydrocarbons from the short chained hydrocarbons through separation dependant on the boiling point of the crude oil.