Answer:
A) ≥ 325Kpa
B) ( 265 < Pe < 325 ) Kpa
C) (94 < Pe < 265 )Kpa
D) Pe < 94 Kpa
Explanation:
Given data :
A large Tank : Pressures are at 400kPa and 450 K
Throat area = 4cm^2 , exit area = 5cm^2
<u>a) Determine the range of back pressures that the flow will be entirely subsonic</u>
The range of flow of back pressures that will make the flow entirely subsonic
will be ≥ 325Kpa
attached below is the detailed solution
<u>B) Have a shock wave</u>
The range of back pressures for there to be shock wave inside the nozzle
= ( 265 < Pe < 325 ) Kpa
attached below is a detailed solution
C) Have oblique shocks outside the exit
= (94 < Pe < 265 )Kpa
D) Have supersonic expansion waves outside the exit
= Pe < 94 Kpa
Answer:
-252.52
Explanation:
L = Distance between lenses = 10 cm
D = Near point = 25 cm
= Focal length of objective = 0.9 cm
= Focal length of eyepiece = 1.1 cm
Magnification of a compound microscope is given by

The angular magnification of the compound microscope is -252.52
Answer:
34 m/s
Explanation:
m = Mass of glider with person = 680 kg
v = Velocity of glider with person = 34 m/s
= Mass of glider without person = 680-60 kg
= Gliders speed just after the skydiver lets go
= Mass of person = 60 kg
= Velcotiy of person = 34 m/s
As the linear momentum of the system is conserved

The gliders speed just after the skydiver lets go is 34 m/s
Magnetism is the product of a moving charged particle. We can have electricity without magnetism but we can not have magnetism without electricity.An electro magnet is made so that we have a soft metal core and electricity around it. A bar magnet is a normal magnet in bar shape with permanent magnetism.
Answer:
v = 19.6 m/s.
Explanation:
Given that,
The radius of the circle, r = 5 m
The time period of the ball, T = 1.6s
We need to find the ball's tangential velocity.
The formula for the tangential velocity is given by :

Putting all the values in the above formula

So, the tangential velocity of the ball is 19.6 m/s. Hence, the correct option is (c).