Answer:
The answer is Near The Ocean Ridges.
In this lab activity, a solution of gum arabic was added to a solution of gelatin to form coacervates<span>. Gum arabic is made up of </span>carbohydrate macromolecules<span> while gelatin is made up of </span>protein macromolecules<span>. this lab show how the earth was formed from many different molecules.</span>
Answer:
88,7 mL of solution
Explanation:
Molarity (Represented as M) is an unit of chemical concentration that is defined as the ratio between moles of solute per liters of solution, that is:
Molarity = moles of solute / Liters of solution
If molarity of KCN solution is 0,0820M and moles of KCN are 7,27x10⁻³ moles:
0,0820M = 7,27x10⁻³ moles / Liters of solution
Liters of solution = 0,0887L = <em>88,7 mL of solution</em>
I hope it helps!
We will use boiling point formula:
ΔT = i Kb m
when ΔT is the temperature change from the pure solvent's boiling point to the boiling point of the solution = 77.85 °C - 76.5 °C = 1.35
and Kb is the boiling point constant =5.03
and m = molality
i = vant's Hoff factor
so by substitution, we can get the molality:
1.35 = 1 * 5.03 * m
∴ m = 0.27
when molality = moles / mass Kg
0.27 = moles / 0.015Kg
∴ moles = 0.00405 moles
∴ The molar mass = mass / moles
= 2 g / 0.00405 moles
= 493.8 g /mol
Correct Answer: Option C:<span> The equilibrium position will shift to the right toward the products.
Reason:
1) This problem is based on </span>Le Chatelier's principle. It is stated as '<em>any</em><span><em> changes in the temperature, volume, or concentration of a system will result in predictable and opposing changes in the system in order minimize this change and achieve a new equilibrium state.</em>'
2) In present case, the reaction involved is:
</span><span> CH3CO2H(aq) + H2O(l) ⇄ CH3CO2-(aq) + H3O+(l)
</span>Hence, when the concentration of acetic acid (reactant) is increased, the equilibrium will shift to right to minimize the effect of change in concentration of reactant.