Answer:
The answer is helium, I hope this is helpful :)
A pure substance has "one set of universal properties". This means they have some of the universal properties in common.
<h3>The definition of universal property</h3>
A characteristic that describes some structures up to an isomorphism is known as a universal property in mathematics, more specifically in category theory.
As a result, independent of the construction technique used, some objects can be described using universal properties. For example, one can define polynomial rings as derived from the field of their coefficients, rational numbers as derived from integers, real numbers as derived from integers, and rational numbers as derived from real numbers.
All of these definitions can be made in terms of universal properties. In particular, the concept of universal property offers a simple demonstration of the equality of any real number structures, requiring only that they satisfy the same universal property.
<h3>
What is the universal property of all substances?</h3>
Diamagnetism is a feature that all substances share.
To learn more about Diamagnetism click on the link below:
brainly.com/question/22078990
#SPJ9
Answer:
6 mass
Explanation:
because the si unit of gram is mass
We have that energy=specific heat * change in temperature * mass. Thus, we have the final temperature (22) minus the initial temperature (55) to equal -33 as our change in temperature. Our specific heat is in J/g*C, so we're good with that because g stands for grams and the aluminium is measured in grams. As there are 10 grams of aluminum, we have

as our final temperature
An exothermic reaction would release energy and would therefore lose heat itself, while an endothermic reaction would absorb energy and gain heat. Therefore, losing heat would be an exothermic reaction
Feel free to ask further questions!
Answer:
65.08 g.
Explanation:
- For the reaction, the balanced equation is:
<em>2AlCl₃ + 3Br₂ → 2AlBr₃ + 3Cl₂,</em>
2.0 mole of AlCl₃ reacts with 3.0 mole of Br₂ to produce 2.0 mole of AlBr₃ and 3.0 mole of Cl₂.
- Firstly, we need to calculate the no. of moles of 36.2 grams of AlCl₃:
<em>n = mass/molar mass</em> = (36.2 g)/(133.34 g/mol) = <em>0.2715 mol.</em>
<u><em>Using cross multiplication:</em></u>
2.0 mole of AlCl₃ reacts with → 3.0 mole of Br₂, from the stichiometry.
0.2715 mol of AlCl₃ reacts with → ??? mole of Br₂.
∴ The no. of moles of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = (0.2715 mol)(3.0 mole)/(2.0 mole) = 0.4072 mol.
<em>∴ The mass of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = no. of moles of Br₂ x molar mass</em> = (0.4072 mol)(159.808 g/mol
) = <em>65.08 g.</em>