Answer:
(a) 0.047 g (b) 0.0016 oz (c) 0.0001 lb
Explanation:
The given mass of the sodium in the slice = 47 mg
(a) Mass has to be calculated in grams
The conversion of mg to g is shown below as:
1 mg = 10⁻³ g
So,
<u>Mass of sodium = 47 × 10⁻³ g = 0.047 g</u>
(b) Mass has to be calculated in ounces
The conversion of ounces to g is shown below as:
453.6 g = 16 oz
Or,
1 g = 16 / 453.6 oz
So,
<u>Mass of sodium = (0.047 × 16) / 453.6 oz = 0.0016 oz</u>
(c) Mass has to be calculated in pounds
The conversion of pounds to g is shown below as:
1 lb = 453.6 g
Or,
1 g = 1/ 453.6 lb
So,
<u>Mass of sodium = (0.047 × 1) / 453.6 oz = 0.0001 lb</u>
Answer:
The major limitations of Newlands' law of octaves were : (i) It was applicable to only lighter elements having atomic masses upto 40 u, i.e., upto calcium. After calcium, the first and the eighth element did not have similar properties
Answer:
Electrons are far apart from the nucleus as we move down the group.
Explanation:
The ionization energy is the amount of energy which is necessary to remove an electron from an atom.
In an atom there exist a force of attraction at the center (nucleus). This is because of the positive charge which exists in the nucleus. This force of attraction is less felt as the distance between the electron and the proton increases. Hence the ionization energy increases as the number of shells increases for an atom. As we move down the group in the periodic table, the number of shells increases which implies a decrease in ionization energy.
Answer:
34.3 g NH3
Explanation:
M(H2) = 2*1 = 2 g/mol
M(N2) = 2*14 = 28 g/mol
M(NH3) = 14 + 3*1 = 17 g/mol
23.6 g H2* 1 mol/2 g = 11.8 mol H2
28.3 g N2 * 1 mol/28 g = 1.01 mol N2
3H2 + N2 ------> 2NH3
from reaction 3 mol 1 mol
given 11.8 mol 1.01 mol
We can see that H2 is given in excess, N2 is limiting reactant.
3H2 + N2 ------> 2NH3
from reaction 1 mol 2 mol
given 1.01 mol x
x = 2*1.01/1= 2.02 mol NH3
2.02 mol * 17g/1 mol ≈ 34.3 g NH3