Answer:
The time it takes the ball to stop is 0.021 s.
Explanation:
Given;
mass of the softball, m = 720 g = 0.72 kg
velocity of the ball, v = 15.0 m/s
applied force, F = 520 N
Apply Newton's second law of motion, to determine the time it takes the ball to stop;
Therefore, the time it takes the ball to stop is 0.021 s.
Answer:
Decreases to half.
Explanation:
From the question given above, the following data were obtained:
Initial mass (m₁) = m
Initial force (F₁) = F
Initial acceleration (a₁) =?
Final mass (m₂) = ½m
Final force (F₂) = ¼F
Final acceleration (a₂) =?
Next, we shall determine a₁. This can be obtained as follow:
F₁ = m₁a₁
F = ma₁
Divide both side by m
a₁ = F / m
Next, we shall determine a₂.
F₂ = m₂a₂
¼F = ½ma₂
2F = 4ma₂
Divide both side by 4m
a₂ = 2F / 4m
a₂ = F / 2m
Finally, we shall determine the ratio of a₂ to a₁. This can be obtained as follow:
a₁ = F / m
a₂ = F / 2m
a₂ : a₁ = a₂ / a₁
a₂ / a₁ = F/2m ÷ F/m
a₂ / a₁ = F/2m × m/F
a₂ / a₁ = ½
Cross multiply
a₂ = ½a₁
From the illustrations made above, the acceleration of the car will decrease to half the original acceleration
Answer:
Fault lines
Explanation:
Earthquakes are most likely to occur near or on fault lines. A great example of this is the ring of fire, a gigantic fault line that gives catastrophic earthquakes.
Answer:
<h2><u>Constant</u></h2>
Explanation:
Please don't comment in this question's comment box
<h2>Thanks</h2>