bearing in mind that the hypotenuse is never negative, since it's just a distance unit, so if an angle has a sine ratio of -(5/13) the negative must be the numerator, namely -5/13.
![\bf cos\left[ sin^{-1}\left( -\cfrac{5}{13} \right) \right] \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{then we can say that}~\hfill }{sin^{-1}\left( -\cfrac{5}{13} \right)\implies \theta }\qquad \qquad \stackrel{\textit{therefore then}~\hfill }{sin(\theta )=\cfrac{\stackrel{opposite}{-5}}{\stackrel{hypotenuse}{13}}}\impliedby \textit{let's find the \underline{adjacent}}](https://tex.z-dn.net/?f=%5Cbf%20cos%5Cleft%5B%20sin%5E%7B-1%7D%5Cleft%28%20-%5Ccfrac%7B5%7D%7B13%7D%20%5Cright%29%20%5Cright%5D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bthen%20we%20can%20say%20that%7D~%5Chfill%20%7D%7Bsin%5E%7B-1%7D%5Cleft%28%20-%5Ccfrac%7B5%7D%7B13%7D%20%5Cright%29%5Cimplies%20%5Ctheta%20%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Btherefore%20then%7D~%5Chfill%20%7D%7Bsin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-5%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B13%7D%7D%7D%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%7D%7D)
![\bf \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{13^2-(-5)^2}=a\implies \pm\sqrt{144}=a\implies \pm 12=a \\\\[-0.35em] ~\dotfill\\\\ cos\left[ sin^{-1}\left( -\cfrac{5}{13} \right) \right]\implies cos(\theta )=\cfrac{\stackrel{adjacent}{\pm 12}}{13}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Cpm%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B13%5E2-%28-5%29%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B144%7D%3Da%5Cimplies%20%5Cpm%2012%3Da%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20cos%5Cleft%5B%20sin%5E%7B-1%7D%5Cleft%28%20-%5Ccfrac%7B5%7D%7B13%7D%20%5Cright%29%20%5Cright%5D%5Cimplies%20cos%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B%5Cpm%2012%7D%7D%7B13%7D)
le's bear in mind that the sine is negative on both the III and IV Quadrants, so both angles are feasible for this sine and therefore, for the III Quadrant we'd have a negative cosine, and for the IV Quadrant we'd have a positive cosine.
Answer:
D) division
Step-by-step explanation:
we know that a ratio is a quantitative relation between two numbers
so let's say
the ratio of boys to girls is 3:4
we know that for every 3 boys there are 4 girls
therefore it is a division operation
Answer:
x < -11/6.
Step-by-step explanation:
−12x + 13 > 35
-12x > 35 - 13
-12x > 22
Divide both sides by -12 and invert the inequality sign:
x < -22/12
x < -11/6.
Answer:
12 two times or 4 eight times
Answer:
27.
Step-by-step explanation:
54 = 2 * 3 * 3 * 3.
3 occurs 3 times so the perfect cube is 27.