Answer:
U = 102.8 J (100 J to two significant digits)
Explanation:
potential energy converted = 20(9.8)(1.8) = 352.8 J
kinetic energy at base of track = ½(20)5.0² = 250 J
energy (work) of friction 352.8 - 250 = 102.8 J
There would be 6 electrons placed on the third energy level.
The period of the orbit would increase as well
Explanation:
We can answer this question by applying Kepler's third law, which states that:
"The square of the orbital period of a planet around the Sun is proportional to the cube of the semi-major axis of its orbit"
Mathematically,
Where
T is the orbital period
a is the semi-major axis of the orbit
In this problem, the question asks what happens if the distance of the Earth from the Sun increases. Increasing this distance means increasing the semi-major axis of the orbit, : but as we saw from the previous equation, the orbital period of the Earth is proportional to , therefore as increases, T increases as well.
Therefore, the period of the orbit would increase.
Learn more about Kepler's third law:
brainly.com/question/11168300
#LearnwithBrainly
YES, ELECTRICITY CONCERNS ENERGY WHICH IS USED AS A FUEL . IN MODERN DAY TECH, MOST MACHINES USE ELECTRICITY AS A FUEL SUCH AS THE ELECTRONIC TRAIN IN TOKYO, JAPAN.