Each mole of a substance contains 6.02 x 10²³ particles
Atoms of Fe = 4.5 x 6.02 x 10²³
= 2.709 x 10²⁹ atoms
You input potential (stored<span>) </span>energy<span> into the </span>rubber band<span> system when you </span>stretched<span> the</span>rubber band<span> back. Because it is an </span>elastic<span> system, this kind of potential </span>energy<span> is specifically </span>called elastic<span> potential </span>energy<span>. ... When the </span>rubber band<span> is released, the potential </span>energy<span> is quickly converted to kinetic (motion) </span>energy<span>.</span>
Hey there!
<span>In this case, the equation of Clapeyron is used :
R = 0.082
Volume in liters :
100.0 mL / 1000 => 0.1 L
</span>
P * V = n * R * T
15.0 * 0.1 = 0.500 * 0.082 * T
1.5 = 0.041 * T
T = 1.5 / 0.041
T = 36.5 K
Answer C
The answer for the problem is explained below.
The option for the answer is "D".
<u><em>Therefore the energy of the light is 4.25 × 10^-19 J</em></u>
Explanation:
Given:
wavelength (λ) = 468 nm = 468×10^-9 m
speed of light (c) = 3.00 x 10^8m/s
Planck's constant is 6.626 x 10^-34J·s
To solve:
energy of light (E)
We know,
E =(h×c) ÷ λ
E = ( 6.626 x 10^-34 × 3.00 x 10^8) ÷ 468×10^-9
E = 4.25 × 10^-19 J
<u><em>Therefore the energy of the light is 4.25 × 10^-19 J</em></u>
Answer:
36290 min = 604.8 hr.
Explanation:
1 lbs = 453.59237 grams.
∴ 2 lbs = 907.18474 grams.
<em><u>Using cross multiplication:</u></em>
500 mg of iron oxide dissolved → 20 minutes.
907184.74 mg of iron oxide dissolved → ??? minutes.
<em>∴ The time needed to dissolve 2 lbs of iron oxide =</em> (907184.74 mg)(20 min)/(500 mg) = <em>36290 min = 604.8 hr.</em>