Answer:
1 x 10^-9 N
Explanation:
F = Gm²/d² = 6.674e-11(8²)/2² = 1.06784e-9
Answer:
A) 3.13 m/s
B) 5.34 N
C) W = 26.9 J
Explanation:
We are told that the position as a function of time is given by;
x(t) = αt² + βt³
Where;
α = 0.210 m/s² and β = 2.04×10^(−2) m/s³ = 0.0204 m/s³
Thus;
x(t) = 0.21t² + 0.0204t³
A) Velocity is gotten from the derivative of the displacement.
Thus;
v(t) = x'(t) = 2(0.21t) + 3(0.0204t²)
v(t) = 0.42t + 0.0612t²
v(4.5) = 0.42(4.5) + 0.0612(4.5)²
v(4.5) = 3.1293 m/s ≈ 3.13 m/s
B) acceleration is gotten from the derivative of the velocity
a(t) = v'(t) = 0.42 + 2(0.0612t)
a(4.5) = 0.42 + 2(0.0612 × 4.5)
a(4.5) = 0.9708 m/s²
Force = ma = 5.5 × 0.9708
F = 5.3394 N ≈ 5.34 N
C) Since no friction, work done is kinetic energy.
Thus;
W = ½mv²
W = ½ × 5.5 × 3.1293²
W = 26.9 J
Answer:
The current in the circuit must be zero.
Explanation:
In a RC circuit, the steady state is reached when either the capacitor is fully charged or fully discharged. In either case, there must not be any current through the circuit because if it exists, it will deliver charge to the capacitor and thus change its charge, which is not a steady state.
Compression and rarefaction are two phenomenon occurs in longitudunal wave!
when there is denser particle gathering in that wave , there we called it compression and the rarer part of particles is rarefaction !
H = 280 ft, the height of the flower pot.
g = 32 ft/s²
Neglect air resistance.
Note that 1 ft/s = 15/22 mi/h
The initial vertical velocity is zero.
Let v = the velocity with which the flower pot hits the ground.
Then
v² = 2gh
= 2*(32 ft/s²)*(280 ft)
= 17920 (ft/s)²
v = 133.866 ft/s
Also,
v = (133.866 ft/s)*(15/22 (mi/h)/(ft/s)) = 91.272 mi/h
Answer: 133.9 ft/s or 91.3 mi/h