True
In fact, the weight of an object on the surface of the Earth is given by:

where m is the mass of the object and

is the gravitational acceleration on Earth's surface. If we use the mass of the object, m=3.0 kg, we find
The choices are:
a. Normal Force
b. Gravity Force
c. Applied Force
d. Friction Force
e. Tension Force
f. Air Resistance Force
Answer:
The answer is letter e, Tension Force.
Explanation:
Force refers to the "push" and "pull" of an object, provided that the object has mass. This results to acceleration or a change in velocity. There are many types of forces such as <em>Normal Force, Gravity Force, Applied Force, Friction Force, Tension Force and Air Resistance Force.</em>
The situation above is an example of a "tension force." This is considered the force that is being applied to an object by strings or ropes. This is a type force that allows the body to be pulled and not pushed, since ropes are not capable of it. In the situation above, the tension force of the rope is acting on the bag and this allows the bag to be pulled.
Thus, this explains the answer.
1st derivative gives velocity;
d r(t)/ dt = 2t i + 6 j + 4/t k
2nd derivative gives acceleration;
d^2 r(t)/ dt^2 = 2 i - 4/ t^2
Speed ;
Square root of (4 t^2 + 36 + 16/ t^2)
For a given time, like 2 seconds, t will be 2. And answer of speed will be scalar.