Answer:
The acceleration of the car, a = -3.75 m/s²
Explanation:
Given data,
The initial velocity of the airplane, u = 75 m/s
The final velocity of the plane, v = 0 m/s
The time period of motion, t = 20 s
Using the I equations of motion
v = u + at
a = (v - u) / t
= (0 - 75) / 20
= -3.75 m/s²
The negative sign indicates that the plane is decelerating
Hence, the acceleration of the car, a = -3.75 m/s²
I think your question is incomplete because the distance between destination and departure point isn't given in the question
We need to see what forces act on the box:
In the x direction:
Fh-Ff-Gsinα=ma, where Fh is the horizontal force that is pulling the box up the incline, Ff is the force of friction, Gsinα is the horizontal component of the gravitational force, m is mass of the box and a is the acceleration of the box.
In the y direction:
N-Gcosα = 0, where N is the force of the ramp and Gcosα is the vertical component of the gravitational force.
From N-Gcosα=0 we get:
N=Gcosα, we will need this for the force of friction.
Now to solve for Fh:
Fh=ma + Ff + Gsinα,
Ff=μN=μGcosα, this is the friction force where μ is the coefficient of friction. We put that into the equation for Fh.
G=mg, where m is the mass of the box and g=9.81 m/s²
Fh=ma + μmgcosα+mgsinα
Now we plug in the numbers and get:
Fh=6*3.6 + 0.3*6*9.81*0.8 + 6*9.81*0.6 = 21.6 + 14.1 + 35.3 = 71 N
The horizontal force for pulling the body up the ramp needs to be Fh=71 N.
Answer:
2.5 ms⁻²
Explanation:
By Newton's 2nd law,
The rate of change of momentum is directly proportional to the unbalance force applied on the object,
By that you can get the equation,
F = ma ⇒ a = F/m
where terms are in usual meaning
a = 3750/1500 = 2.5 ms⁻²
The temperature will remain constant, at around 100 C, and the volume of water in the pot will decrease, as it turns into steam and floats away from the pot.