Answer:
I would probably say C to be completely honest
Explanation:
If you agree make sure to give me a like
Answer:
v = 5.24[m/s]
Explanation:
Este problema se puede resolver por medio del principio de la conservación de la energía, donde la energía potencial es igual a la energía cinética. Es decir a medida que el carrito desciende su energía potencial disminuye, pero su energía cinética aumenta.

Donde:

Ahora reemplazando:
![\frac{1}{2} *m*v^{2}=m*g*h\\\\0.5*v^{2}=9.81*1.4\\v=\sqrt{\frac{9.81*1.4}{0.5} } \\\\v=5.24[m/s]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%3Dm%2Ag%2Ah%5C%5C%5C%5C0.5%2Av%5E%7B2%7D%3D9.81%2A1.4%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B9.81%2A1.4%7D%7B0.5%7D%20%7D%20%20%20%5C%5C%5C%5Cv%3D5.24%5Bm%2Fs%5D)
Answer: 4.speed
Explanation:
In this case, we know that the cart remains at a constant 20km/h.
Now, one could say that "the velocity remains constant, because it always is 20km/h"
But remember that velocity is a vector, so this has a direction, and if the cart is going around a turn, then the direction of motion is changing, which tell us that there is acceleration.
But the module of the velocity, the speed, remains constant at 20km/h.
Then the correct option is 4, speed.
Answer:
he peaks are the natural frequencies that coincide with the excitation frequencies and in the second case they are the natural frequencies that make up the wave.
Explanation:
In a resonance experiment, the amplitude of the system is plotted as a function of the frequency, finding maximums for the values where some natural frequency of the system coincides with the excitation frequency.
In a Fourier transform spectrum, the amplitude of the frequencies present is the signal, whereby each peak corresponds to a natural frequency of the system.
From this explanation we can see that in the first case the peaks are the natural frequencies that coincide with the excitation frequencies and in the second case they are the natural frequencies that make up the wave.