Well, st first we should find <span>initial momentum for the first person represented in the task which definitely must be :
</span>

And then we find the final one :

Then equate them together :
So we can get the velocity, which is

In that way, according to the main rules of <span>conservation of momentum you can easily find the solution for the second person.
Regards!</span>
Answer:
17.54N in -x direction.
Explanation:
Amplitude (A) = 3.54m
Force constant (k) = 5N/m
Mass (m) = 2.13kg
Angular frequency ω = √(k/m)
ω = √(5/2.13)
ω = 1.53 rad/s
The force acting on the object F(t) = ?
F(t) = -mAω²cos(ωt)
F(t) = -2.13 * 3.54 * (1.53)² * cos (1.53 * 3.50)
F(t) = -17.65 * cos (5.355)
F(t) = -17.57N
The force is 17.57 in -x direction
Answer:
Explanation:
Potential energy is the energy of a body due to is virtue of rest.
Potential energy is given as mgh
g is a constant and it is 9.81m/s²
And also the mass of the body is given as 1.3kg
Now the height of the body is
He took a book to a storey building of height 26m
He still holds the book 151 cm (1.51m) above the house.
The house is on an altitude of 1609m from the sea level.
Total Ug with out the sea level is
Ug=mgh
Ug=1.3 × 9.81 ×(26+1.51)
Ug=350.84J
Then, the potential energy due to the sea level is given as
Ug=mgh
Where g = 1/6371 m/s²
Therefore
Ug=mgh
Ug=1.3 × 1/6371 ×1609
Ug=0.328J
Total energy = 0.328+350.84
Ug=351.17J
Answer:
= 1.7 cm
Explanation:
The magnification of the compound microscope is given by the product of the magnification of each lens
M = M₀
M = - L/f₀ 25/
Where f₀ and
are the focal lengths of the lens and eyepiece, respectively, all values in centimeters
In this exercise they give us the magnification (M = 400X), the focal length of the lens (f₀ = 0.6 cm), the distance of the tube (L = 16 cm), let's look for the focal length of the eyepiece (
)
= - L / f₀ 25 / M
Let's calculate
= - 16 / 0.6 25 / (-400)
= 1.67 cm
The minus sign in the magnification is because the image is inverted.
= 1.7 cm