Answer: thanks for the point
Explanation:
Answer:
9R
Explanation:
We know that the resistance is
.
If we stretch the wire to a new length L2 = 3L, the cross-sectional area will also change. If the cross-sectional area doesn't change throughout the wire, we can say that:
Volume = L*A = 3L * A2 being A2 the new area after stretching the wire.
Since the volume remains the same we conclude that A2 = A/3
With this information, we calculate the new resistance:
![R2=\rho *\frac{L2}{A2}=\rho *\frac{3*L}{A/3}=\rho * 9 * \frac{L}{A}](https://tex.z-dn.net/?f=R2%3D%5Crho%20%2A%5Cfrac%7BL2%7D%7BA2%7D%3D%5Crho%20%2A%5Cfrac%7B3%2AL%7D%7BA%2F3%7D%3D%5Crho%20%2A%209%20%2A%20%5Cfrac%7BL%7D%7BA%7D)
Since
, and by simple inspection of the previous equation, we get:
<em>R2 = 9*R</em>
Answer: m = 0.035kg = 35g
Explanation: Momentum p=0.140kgm/s
Velocity v=4m/s
Mass m=?
Formula-
Momentum depends on the mass of the object in motion and its velocity.
The equation for momentum is
p = mv
m = p/v
m = 0.140/4
m = 0.035kg
m = 35g
Hence, in the toy dart gun mass of the dart is 0.035kg.
Answer:
Mechanical
Explanation:
The tank is at rest. And energy of any substance at rest is known as potential energy.
Now, in forms of energy, potential energy is a type of mechanical energy.
Thus, the correct option is mechanical Energy.
The solution would be like this for this specific problem:
Given:
diffraction grating
slits = 900 slits per centimeter
interference pattern that
is observed on a screen from the grating = 2.38m
maxima for two different
wavelengths = 3.40mm
slit separation .. d =
1/900cm = 1.11^-3cm = 1.111^-5 m <span>
Whenas n = 1, maxima (grating equation) sinθ = λ/d
Grant distance of each maxima from centre = y ..
<span>As sinθ ≈ y/D y/D =
λ/d λ = yd / D </span>
∆λ = (λ2 - λ1) = y2.d/D - y1.d/D
∆λ = (d/D) [y2 -y1]
<span>∆λ = 1.111^-5m x [3.40^-3m] / 2.38m .. .. ►∆λ = 1.587^-8 m</span></span>