Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
t=(0-(250sin75)^2)/-9.8
<span>the distance one is (2500+610)- (250m/s*cos75)*t=Dh Dh=horizontal distance </span>
<span>the max height one is d=0.5*9.8*t^2 </span>
<span>d= max height subtract 1800-d</span>
when approaching the front of an idling jet engine, the hazard area extends forward of the engine approximately 25 feet.
<h3>What impact, if any, would jet fuel and aviation gasoline have on a turbine engine?</h3>
Tetraethyl lead, which is present in gasoline, deposits itself on the turbine blades. Because jet fuel has a higher viscosity than aviation gasoline, it may retain impurities with greater ease.
Once the gasoline charge has been cleared, start the engine manually or with an electric starter while cutting the ignition and using the maximum throttle.
On the final approach, the aeroplane needs to be re-trimmed to account for the altered aerodynamic forces. A substantial nose-down tendency results from the airflow producing less lift on the wings and less downward force on the horizontal stabiliser due to the reduced power and slower velocity.
Learn more about turbine engine refer
brainly.com/question/807662
#SPJ4
The answer is c: <span>1960 J
</span>Potential Energy :
<span>PE = m x g x h = 40*9.8*5=1960
</span>
The answer is c.
Sound, light and heat energy.
Hope this helped :)
Answer:
2.19 N/m
Explanation:
A damped harmonic oscillator is formed by a mass in the spring, and it does a harmonic simple movement. The period of it is the time that it does one cycle, and it can be calculated by:
T = 2π√(m/K)
Where T is the period, m is the mass (in kg), and K is the damping constant. So:
2.4 = 2π√(0.320/K)
√(0.320/K) = 2.4/2π
√(0.320/K) = 0.38197
(√(0.320/K))² = (0.38197)²
0.320/K = 0.1459
K = 2.19 N/m